SOME SIMPLIFICATIONS AND IMPROVEMENTS IN THE
STOCHASTIC MUSIC PROGRAM

John Myhill

The Stochastic Music Program (henceforth SMP) was invented by Y. Xenakis
in 1961, and used by him to compose the works ST/10-1, 080262; ST/48-1, 240162,
‘Atrées and Morsima-Amorsima. It was a computer implementation of the same
method that he had previously used to compose Achorrhipsis by hand. It is
described informally in his book "Formalized Music'" Chapters I and V, and
more formally in the unpublished "User's manual for the stochastic music
program'" by his student Bruce Rogers.

The basic flowchart of the program is as follows
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This diagram 1s more or less self-explanatory. A piece’is composed in
sections; the composition of each section is completed before that of the next:
section is begun. For each section, three global features are first determined;
its length in seconds, its density in notes per second, and the composition of
the orchestra; this last will be explained in detail later. When the
determination of these global parameters is completed, the program composes th=a
notes of the section. It computes in turn, for each note, the starting time,
the instrument on which the note 1is played, the pitch of the note (if the
instrument produces pitched sounds), the glissando speed of the note (if the
instrument is capable of a glissando; the speed is measured in semitones per
second), its duration (in seconds; it obviously need not extend tc the starting
time of the following note), and finally its 'intensity-form'; this is not
necessarily a simple intensity like p or mf, but may be something like
pp<<:: £ or p<:::ff;::>pp . It then checks whether the section has come
to an end; this can be done by adding the starting time of the note to its
duration and compa;éng;it with the already-determined sectioun-length; if it has
not, it computes the data for the following note; if it has, it asks whether
the piece is finished; if it is, the progr;m terminates, otherwise it proceeds

to compute the global data for the next section.

STEP 1

This means we are now working om Section 1.

273



STEP 2

|
COMPUTE LENGTH OF SECTION § .
We let DELTA be the average section length d&sired by thé composer:. We

pick the length A of Section S by the formula

A = - DELTA * LOGF (X1)

where LOGF is the natural logarithm and X1 is a random number between O

and 1 chosen by
X1 = RANF(-1)

However, Xenakis specifies a certain maximum section length ALIM . If
A as computed above exceeds ALIM , then the process is repeated with a new
random number until an A < ALIM is obtained. Howéver the same result would
occur if we were first of all to restrict X1 so that it would lie in the

ZALIM/O . o-ALDM/D
b

interval (e , then

) instead of (0,1). If X1 is

A =ALIM ; 1if XlrxiS' 1 then A =0 . Hence the precgram can be shortened

I

as follows el Il

2. Choose Xl randomly (i.e. flatly) distributed between e_ALIM/DELTA

and 1 . (This is not one fortran step but it is trivally possible using

RANF and scaling.)
3. A = -DELTA * LOGF (X1)
STEP 3

COMPUTE DENSITY OF SECTION S .
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"Density" means number of notes per second. The composer specifies a
minimum and maximum density. (Actually in Xgnakis‘ account, he specifies the
minimum density V3 and a number KTE such that the maximum density is
V3 * eKTE'1 . We choose to specify directly the minimum density V3 which we
rechristen DMIN and the maximum density DMAX). The deunsity of a particular
section is called DA . The subjective density is logarithmically related to

the objective density so that DMIN 1s given a subjective density of 0 and

DMAX a subjective density of KTE-1 which we call R . Thus

objective densit§
DMIN

Subjective density = loge

and the subjective density U always satisfies 0 <U<LKR.

In Step 3 we choose the subjective density in a random fashion, but
reiating it to the previous subjective density. The heaning'of 'relating' will
be seen from the following examples,

Ex. 1. kSuppose we have chosen a subjective density U for one section
and want a subjecii%é ﬁensity U' for the following one. Suppose we pick U’
at random, requiring only that D < U' < R+ without considering U at all.
Then the expected value of the "interval lU- u'| is R/3 . ("expected
value'" means the average value when the process is repeated a‘large number of
times.)

Ex. 2. One way to relate the new density to the old is as follows. We
first flip a coin to decide whether to go up or down, i.e. whether to pick
U' >U or U' <U. In the focrmer case we pick U' randomly between U and
R, 1in the latter randomly between 0 and U . Notice this will obviously

give results substantially different from the method of Ex. 1; for example if
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:U is very slightly less than R , the method of Ex. 1 willrmake U' still

' %1oser to R with a very small probability, while that of Ex. 2 will do so
%ith a 50% probability. In this case the expected value of ‘U- U'| is R/4
the smalier leaps indicate a greater influence of the preceding‘value.

‘ Ex. 3. A more sophisticated way to relate the new subjective density to

t
|

the old one 1s as follows. First, as in Ex. 2, we flip a coin to decide
whether to increase or decrease U, In the former case we pick randomly an
interval contained in (U,R) , 1i.e. we pick two random numbers Xl,X2

satisfying U < X, < R . Then we increase U by the length of this interval,

1
i.e. U' =10+ ‘X1-X2| . In the latter case, we pick Xl,X2 satisfying
0 <X, <U and let ' =0 - le-X2| . The expected value of the "leap"

is now only R/6 , which gives a still greater degree of dependence.

Xenakis uses the method of Ex. 3 (or rather oﬁe mathematically equivalent
to it) to choose the value of U”; for the first section (i.e. if S =1) he
simply picks 7it randomly between O and' R . This gives rise fo the
following program; in which we put *'s after the instruction numbers because
we want to make some further modificationszater.

* %
4 .. IF s=1 go to 16- . -

5 . X1 = RANF(-1)

6. If X1 <% go to 12 .

7 . Choose X2 randomly distributed between 0 and U ,
8 . Choose X3 randomly distributed tetween 0 and U .

9. U=1U- |X2-X3
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3

il . Go to 19 . .
*

12 . Choose X2 randomly distributed between U and R .
*

13 . Choose X3 randomly distributed between U and R .
*

14, U=U+ |X2-%3
* *

15. Go to 10 .

16 . R = LOGF (DMAX/DMIN) .

17 . Choose U randomly distributed between U and R .
* *

18 . Go to 10 .

This program has to be changed slightly because there is another constraint.
The composer may not wish more than a certain maximum number. GTNA of notes 1in
any section. The number of notes in the section being worked on is roughly
equal to thefnumber of notes per second (namely DA) multiplied by the length
of the section in‘sgbo;ds (namely A) . 1If A*DA > GTNA we are in trouble.
(The imposition of the bound GTNA as well as the bounds ALIM and DMAX 1is
musically reasonable; a composer may want to allow sections up to 5 minutes
long (ALIM = 300) and speeds of up to 100 notes per second (DMAX = 100) ,
but be quite unwilling to have 5 minutes of such fast music. Scherzos are
traditionally short in comparison to the other movements.) The way Xemnakis
proceeds 1f A *DA > GINA 1is described as follows in Rogers manual (p.18).

"If NA (a rounded-off version of A*DA) 1is greater than GINA , the
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program tries again ----[in our language, it runs the above program with new
'¥andom numbers X1 X2 X3]; if there is no success after KT2 tries

kKTZ is 15 actually), the program sets A equal to DELTA and tries for a
new DA ., (Of course the new DA might not work either and then we would

@ave to cycle some more.) Actually this method is not the same as the one

Qsed in Xenakis' book; here the program picks a mnew A as well as a new DA

15 times. We doubt if there is any musical difference between these two
.methods, or between either of them and the simple device of not letting U get.
too big in the first place. (Actually the method of cutting off U 1is
mathematically equivalent to the method described by Rogers if instead of
trying new X1 X2 X3 15 times we just do it until we find a value for DA

with A*DA < GINA .)

The program 4* - 13* was chosen to choose vélues of U between 0
and R . We want to ensure also that it does not make A*DA = A¥*DMIN®* eU>GTNA .

This means that we must have

U < LOGF(GTNA/ (A * DMIN))

We épbreviape the quantity oqrthg right by BOUND .

_The following cases can arise. (1) If the old U is > EOUND , we
musp_pick X2 or X3 between 0 and BOUND (and don'g pick X1 at all
because we must make the new U < the old one). (2) If the old U is
< BOUND we pick X1 as before; if now (2a) X1 > % we pick X2 and X3 1in
the interval (0,U) as before, but if (2b> X1 <% we pick them in the
interval (U, min (R, BOUND)) . 1If firnally (3) there is noold U, i.e.

if s=1, we pick U between 0 and min (R, BOUND) . Here comes the
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program (where for briefly we write e.g. "Pick 0 < X2 < U"

X2 randomly between O and U."

4,

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

For checking purposes, here is the flowchart.

]

BOUND = LOGF (GTNA * DMIN))

If S 1 go to 22

If u < BOUND go to 12

Pick 0 < X2 < BOUND

Pick 0O < X3 < BOUND

U = BOUND - |X2 - X3

DA = DMIN*eU

Go to 24

Pick 0<Xl<l

If X1 <% go to 18

Pick 0<X2<U

Pick 0 <X3 <U

U=T- |x2 - x3|

Go to 10" -~

Pick U < X2 < min (R, BOUND)
Pick U < X3 < min (R, BOUND)
U=U+ |x2 - x3|

Go to 10

Pick 0 < U < min (R, BOUND)

Go to 10

NA = smallest integer > A*DA
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COMPUTE
BOUND B

0<{§§}<B 0<Xl <l

/

U = B- |X2 - x3|

X2 ‘ 2
0 < {3} <vuy Ju< 1< (5

N

U=U+1x2 -XBI}1

COMPUTE DA, NA
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Note added March 5, '79. An adroit programmer (Stephen Isaac) asked me
what happens when, in instruction 4 above, we have GTNA < A*DMIN , so that
BCUND and consequently U becomes negative. In that case ‘DA < DMIN- and we
are in all sorts of trouble. If the reader traces back, he will find that
this c#n only happen if we have inadvertently specified ALIM. so large that
even at the minimum possible '"tempo'" DMIN we can't possibly have a section
ALIM seconds long without exceeding the limit GINA .on the, number cf notes pef
section. in case this happens, i.e. in case DMIN*ALIM> GINA (which can and
shoﬁld be checked immediately from the data before any other computation is
made) there are three possible alternatives and only three: (@) decrease
DMIN to GTNAJALIM; (B) decrease ALIM to GTNA/DMIN; or (8) increase
GTNA to DMIN®ALIM, (@) and _(6) both result in allowing éomething that
the user explicitly prohibited (respectively allowing densities <« DMIN or
sections with > GINA notes), whereas (B8) on the other hand merely
prohibits something that the user would allow (sections more than GTNA/DMIN
seconds long). Further (&) and (0) have their own drawbacks; (&) would
completely confuse the interpretation of tbg "E-table" (see step 4 below)
which is, musically speaking, the heart of the composition; and (8) would
leave open the possibility of long runs of fast notes which GINA was
explicity inserted to prevent. Hence .in cleaned up version of the language

we intend to do (B) (and of course tell the user we have done s0).

STEP 4

DEFINE ORCHESTRA

The orchestra is divided into timbre-classes and each =-imbre-class
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tcontains one or more instruments. We shall generously provide for twenty
' %imbre—classes aﬁd twenty instruments in each class. We shall discuss the
instrUments later; suffice it here to say that the timbre-classes are not
necessarily disjoint. We shall use (not following Xenakis) the notation X-Y
ﬁor the Yth instrument of the Xth timbre-class.
| The composition of the orchestra is the heart of the composer's task,
With each number from 0 to R = LOGF(DMAX/DMIN) ié associated a distribution
of timbre-élasses, i.e. with the number 0 we might associate 57 percussion,
IO%Vhorns, 10% harp, 30% clarinets, 20% glissando (strings and trombones)
5% tremolo (strings and brass) 10% pizzicato and 10% sul pont. This is given
by a function E(X,U) = proportion of the Xth timbre-class in the orchestra
if the (subjective) density is U . This is tabulaﬁed by the composer for ail
integers X < K where K is the number of timbre-classes used. (Xenakis
writes KTR) and all values of U from D to the least integer >R .

The orchestra-definition steps procéeds to define numbers 'Q(l) e QK
such that Q(I) fq;,'I:= 1 to K is the proposition of notes in section §
which are played by instrument in the _Ith timbre-class. We indicate the

'

program
DO 27 I=1...K

25, Find an integer P such that P < U<P +1
26. Look up E(I,P) and E(1,P + 1) in the table (data}
27. Compute E(I,U) by linear interpoclation between E(I,P) and

E(I, P +1) and store it as Q(I)
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28. Compute S(I) = z Q (M) S(I) 1is the proportion of notes in the
il

current section which are played by instruments of timbre~classes
1,...,T . S(X) should be 1 ; 1if it is not, due to round-off

error, make it 1 anyway.

STEP 5

No comment necessary here.

STEP 6

COMPUTE STARTING TIME OF NOTE

This is the starting time within the section (not measured from the

beginning of the piece). So if N =1 the starting time is. 0 . Along with
the starting time TA of each note we determine the interval T between its
starting timé and that of the next note. (This may be <« , = or > the
dgration oﬁ the n;tégk;n’phgilast case we have'a rest between notes, in the

first an overlap.) T 1is chosen at random*in the same way that the section

length was earlier. The average length, corresponding te DELTA before, has

to be obviously 1/DA . The program therefore reads
30. ‘X = RANF (-1)
31. T = LOGF(X)/DA

32. TA=TA+T (unless N=1, then TA =0)
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STEP 7

DETERMINE INSTRUMENT

We first determine the timEre-class. It will be remembered that for
I=1,...K, S(1) is the probability that a note will be played cn an
instrument belonging to one of the first I timbre-classes. This part of
the program reads simply:

33. X = RANF(-1)

34, Find I such that S(I - 1) < X < S(I) (where we set §(0) = 0).

35. KR=1I. (So KR 1is the timbre-class of the instrument which will

now play.)

To determine which instrument it will be, we use another table supplied by
the composer which defines the timbre-classes in morerdetail.. In fact he
tabulates the conditional probability given that timbre-class I hasibeen
chosen, that:the Jth member of this class will play. This is given by (1)
specifying for Il=_l,:..,KTR the member NT(l) of instruments in timbre-
class I and (2)‘J;§ecifying a function PN(1,J) defined for 1 < I < KIR
and 1 < J < NT(1l) which is theafoneumnriﬁned probability. Naturélly the
numbers PN(I,1) + PN(I,2) + ..., + PN(I,NT(I)) must sum to 1 . The

program for determining which instrument will play is then just like the

program for determining which timbre-class it will come from.

37. Compute for J =1 to NT(KR) the number SPN(KR,J) = ZT PN(KR,V).
V<3

This is the probability, given that timbre-class KR has been chosen,

that one of the first J instruments In it will play. WNaturally
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SPN(KR,NT(KR)) = 1 and we set SPN(KR,0) = 0 . The function SPN
should actually be calculated in its entirety before the program
begins (in a preliminary stage), since it depends only on the data
supplied by the composer.
! 38. X = RANF (-1).
39. Find J such that SPN(KR,J-1) < X < SPN(KR,J)
40, INSTR = J . (This instrument is designated‘ RR * J 1in the printed

output - the Jth instrument of the KRth class. )
STEP 8

COMPUTES. PITCH

The instruments are divided into the following‘5 classes.

1. Pitched instruments capable of glissando -e.g. arco'strings, trombeones.

2. Pitched instruments incapable of glissando but with control over the
duration e.g. trumpets and flutes as normally playe&, organs.

3. Pitched: instruments which either necessarily have a very short
duration, (e.g. pizzicato stringg, xylophone), or whose duration is
determined by the amplitude.

4. Unpitched instruments with no control over the duration e.g. gongs,
(unless suddenly damped).

5. Unpitched instruments with control over the‘duration, e.g. (rolled)
drums.

The composer supplies a table which fof I=1,...,KTR and for

j=1,...,NT(I) gives a number ZZ(I,J) telling what class the instrument

[
il
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I-J belongs to., If KR ¢ INSTR is not a pitched instrument, obviously we

must skip this section. Hence the program continues:

41, If ZZ(KR,INSTR) = 4, go to Step 11 (where the intensity is

computed).

it

42, 1If ZZ(KR,INSTR) 5, go to Step 10 (where the duration is
computed).
Possible pitches are numbered from O to .say 90.(in semitones normally).‘
The ranges.of the instruments are given in a table of functions HMIN(I,J) and-
HMAY(I,J) for 1 < I <KTR and 1 < J < NT(I) supplied by the composer.
LAST (I,J) 1is the last note played by the instrument. At the beginning of the
program we set last (I,J) = -1 for all 1 <I<KTR and 1 < J < NT(I)
If the instrument has not played before, we choose the pitch 4‘at random within
the range HMIN(KR,INSTR) to HMAX(KR,INSTR). (Notice that the ''range"
EMIN to HMAX 1s not used in an orchestration-book sense, it is simply that
part of the instrument's range which the composer wants to'use.) The program
obviously continues;.
~~=-43,--1f LAST(KR,INSTR) > 0 go to 50}
44. Pick HMIN(KR, INSTR) < X < HMAX(KR, INSTR)
45, H = integer closest to X .
46. LAST(KR,INSTR) = H
47. If ZZ(KR,INSTR) =1 go to step 9
. (to compute the glissando speed).
48. If ZZ(KR,INSTR) = 2 go to Step 10

(to compute the duration).
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49, If ZZ(KR,INSTR) = 3 go to Step 1l
(to&compute the intensity).
If the instrument has played before, we proceed exactly as in the case
of density.
50. Pick O0<yY<l
51, If Y< % go to 56
52. Pick HMIN(KR,INSTR) < Y1 < LAST(KR, INSTR)

53. Pick HMIN(KR,INSTR) < Y2 < LAST(KR, INSTR)

54. X = LAST(KR,INSTR) - |Yl - v2]

55. Go to 45

56. Pick LAST(KR,INSTR) < Y1 < HMAX (KR, INSTR)
57. Pick LAST(KR, INSTR) < Y2 < HMAX (KR, INSTR)

58, X = LAST(KR,INSTR) + |v1 - v2|

59. Go to 45,

STEP 9

COMPUTE GLISSANDO SPEED

The glissando speed is chosen by a Gaussian distribution. The mean
glissando speed is always O . Thus the fastesf glisses will occur when the
deviation is greatest, but they will occur, even then, much less often than
slow glisses.

A random variable X 1is sais to have a standardized normal distributiocn

1 +A -AZ
about O if it satisfies Prob. (-A<x<dA) =8Q) = — f e dl =
Ji - A
2 A 2 ,
;% f e . To get some idea of the order of magnitude of the function 8
T 0
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observe that

6 =~ .52
(1) ~ .84
6% ~ .96

6(2) > .995
Thus in a long series of samples such an X will take values
> 2 less than %% of the time;
from 1% to 2, -about 127, of the time

4

from 1 to 1%, about 6% ,

o\

from to 1, about 16% ,
from O to %, about 26% ,
. .. from -¥ to 0, about 26% ,
from -1 to -%, abodt 167% ,
from-1% to -1, about 6% ,

from -2 to -%, about %’/o and

< =2 less than %% of the time.

lLet us apply this to the distribution of glissando speeds. Suppose we want

Gaussian distribution of glissandc speeds, such that about half the glissandi
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have speeds of <« 53 semitones per second; then we simply take a standardized
normally distributed random number X and multiply it by 106. Slightly over
half namely 52% of the values of X will be between + % , so slightly over
half the glissando will have speeds (upwards or downwards) of <« 106, % = 53
semitones per second.

This suggests that we obtain the distribution of glissando speeds by
multiplying a standard-normal random wvariable by some constant K . If this
is done, siightly over half the glisses will have speeds of < 2K semitones
per second, and slightly under half of them will have speeds greater than
that, Thus the bigger we take X(> 0) the more active the passage will be
from the point of view of glissandi. (Of course, if we take K = 0 there

‘will be no glissando at all). ILet us call this K the glissando coefficient
(Xenakis's ALFA).

There are thus three steps in the program,

A. Choose ALFA.

B. Choose a:standard-normal distributed number w.
~r- 0. Set Glisgando-speed = ALFA*W . ;

Xenakis provides three ways of choosing ALFA; it may depend or directly
on the density, or it may be independent of it. 1In the first case, the fast
music will be relatively free of glissandi but the slow music full of them;
in the”se;ond ca;e, ﬁhe reverse will be true, and in the third case there
will be no comnnection between speed and amount of glissando. There seems to
be a definite programming error in SMP; in all three cases, fhe glissando

coefficient is chosen while working on the note (i.e. during the present
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section 9). In the first two cases, this is correct but inefficient, since

the coefficient remains constant for the entire section. In the third case
however the result seems mathematically meaningless; it will mean that in a
given section the "spread" (or variance, technically speaking) of the

Gaussian distribution is itself varying randomly with every note. I do not
know what meaning to accord to a sequence of random samples (here the glissando
speeds of the successive notes of a section) such that the random process
according ﬁo which the samples are chosen itself changes randomly with every
sample. We thereforg believe that the glissando coefficient ALFA should be
4chosen as soon aé‘thé density of the section is known, i.e. during Step 3.

The three values computed for glissando-speed (Xenakis' VIGL(1), I = 1,2,3)
are all printed out by SML . The composer chooses which one he wants by
intuition. We suggest a simple method by which this task can be mechanized.
The composer supplies two numbers 1INV and DIR such that 0 < INV + DIR < 1.
They‘represéﬁt the probabilities the glissando coefficient will vary inversely
resp. directly with:.thé density., Of course 1-(INV + DIR) is then the
probability &hat it will be chosen indepenégntly of the density.

The rules for- inverse and direct correlation of ALFA and density are

as follows = -

Invetrse: ALFA qﬁ;(30-f(20=¥§)) or as near as makes no difference

ALFA

: N - U
53.2 : (BS'SR.)

Direct: ALFA =.m(10 + (20*-1%))
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approximately

ALFA = 17.7 + (35.5*%)

The “independent'" correlation is given by
ALFA =17.7 + 35.5 X

whére ¥ is flat between 0 and 1 .

Notice all these satisfy 17.7 < ALFA < 53.2.

The new portion of program to be inserted at the end of Step 3 is now easy:

24.1 X = RANF(-1)

24,2 If X < INV go to 24.9

24.3 If X < INV + DIR go to 24.7
24.4 Y = RANF(-1)

24.5 ALFA = 17.7 + (35.5% Y)

24,6 Go to 253 |

24.7 Y = U/R

24.8 Go to 24.5

24.9 ALFA = 53.2 - (35.5*%U/R)

Returning to Step 9 the next step is (B) to compute a random number W
with the standard-normal distribution. The method used by Xenakis is
unnessarily complicated; a simple way is the method of Box and Muller. We

write the program
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60, Pick 0 <Xl <l

6l. Pick 02 X2 <1

62. W = (SQRT(-2* LOGF(X1))) * cos (2* T * X2)

Part (C) the actual computation of the glissando speed VIGL 'is now trivial,
63. VIGL = ALFA*W

64. 1If |VIGL| < VITLIM go to 66

65. Set VIGL = VITLIM or -VITLIM according as W is >0 or <O .

Here VITLIM 1is a maximum glissando~speed supplied by the composer,.
STEP 10

COMPUTE DURATION

The average number of attacks per second in thé current section is DA .
Consider a length of time J seconds, Then (abou‘t)' I #A attacks occur,
The current instrument is KR+ INSTR . It belongs to timbre-class KR . The
proportion of the 3 DA notes which are.played by instruments belounging to
this timbre-class: is Q(KR) computed in line 27 of the program (end of Step 4).
Therefore Q(KR) *J * DA notes are played by such instruments in time J .
The conditional probability, given that such an instrument is playing, that
it is indeed the instrument KR * INSTR 1is PN(KR, INSTR) > 0 . (see Step 7).

Therefore in time J the current instrument plays approximately

Q(KR) * J * DA * PN(KR, INSTR) notes. The average time between attacks by the

instrument in the present section is therefore
1/(G(KR) * DA * PN(KR, INSTR) seconds

Now we want to compute the average time batween attacks 1in the slowest
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possible section, for this instrument. Let J be a variable ranging over the
';umbers < R (specifically we need only consider the values 0,1,2,...[R],R,
&here [Rj is the largest integer containad in R). If in Step 2 for any
section we compute U =J then we shall also compute DA = DM1ﬁ=keJ and in
Step 3 we shall compute Q(KR) = E(KR,J) . The average time between attacks

by the given instrument KR * INSTR in any section therefore depends only on

J , and it is
$(J) = 1/(E(KR,J) * DMIN % e’ % PN(KR, INSTR))

We must pick J to make ¢(J) a maximum, i.e. to make the denominator
of the above expression a minimum. Since DMIN and PN(KR, INSTR) are

constants supplied by the composer, this amounts to minimizing the product

E(KR,J) * e’

We wish ‘therefore to compute the wvalue for 1 =1,...,K (K the number

of timbre-classes) of -

PSI(I) = that value of U( = 1,2,...,R) for which E(I,U)+e’ 1isa

minimum; and store the values

CHI(D) = 1/(E(I,PSI(D) * DMIN* P S1(D) -

CHI(I) = mean time between attacks of timbre-class I at their slowest.

NOTE: This computation can be done using only the composer's data E(I,J)

and DMIN . Do it therefore right at the beginning (As Step 1.1).
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As Step 1.2 we tabulate for 1 =1,...,K and J =1,...,NT(K) the

constants

MAX(I,J) = CHI(I)/PN(I,J);

These are the maximum mean times from one attack to the next in any section,

;jé{'the max over all S of u(I~J,S) = mean time between attacks of I-J in

-Section S.

We have

1

Z(1,7) = =

E(I,U,) *DMINe 0w pn(L,T)

for U0 = PSI(I) so chosen as to make the movement of the instrument I+ J-

slowest. So ZMAX(I,J) 1s the longest possible mean time between attacks

of I«J . In the present section, S, we have for all I and J
2(1,3) = .

E(I,U) * DMIN *..eU * PN(I,J)

1
Q(I) * DA * PN(I,J)

(of instructions 27 and 10). This is the average time between attacks of
I+J ) during Section S .

These values depend only on the Q(I), DA and composer's data, sc that
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they can be tabulated immediately after 27, i.e.

27.1 store all values, Z(I,J) defined above, where
1: 1<K, I<J<NT(I) and 2Z(I,J) =1,2 or 5,

All these steps are done preliminary to Step 10,

Determining the range. The composer provides a table giving for

1=1,...,K and J =1,...,NT(I) the length GN(I,J) of the longest note
playable on the instrument I+ J . ZXenakils adopts the following procedure.
If the avefage time between attacks is as long as possible, i;e. if the
music of the timbre-group KR 1is as slow as it can be, i.e. if Z = ZMAX ,
then .-the longest note played by the instrument in the present section should
be as long as possible, i.e, it should be GN(KR, INSTR) . If on the other
hand the average time between attacks is.l second or less, then the longest
note should be .1 second (which we'll conventionally regard as 0 and then
change; see Rogers p. 37). Let the longest note in the present section on the
current instrument have length GE . (Xenakis; Rogers calls it Z;) . Then we.
need s
I. If Z = ZMAX , theh AGE = GN(ﬁR*INSfR)
II. If Z <+l then GE =0

This is accomplished by setting

4 MAX(10GZ,0)
LOGZMAX

66%. GE = GN(KR, INSTR)
Note: 1Instead of MAX(LOG Z, 0) Xenakis has ILOG Z| . This makes no sense

to us. It means that if the music is going so fast in the current section

that KR » INSTR makes two attacks per second, the longest note played by
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KR ¢« INSTR will be longer than if it is making one attack per second; if it is ‘1
making 4 attacks per second (perfectly possible in a fast tempo) its longest |
note length will be longer still (by a factor of log 4/log 2 =2, {i.e.

twice as long).

*
We intend to revise 66 still further (we put a * on it to indicate its

provisional status). First; let us consider the case where Z = Z(XKR,INSTR) =1 .

That is, the average distance between attacks of KR+ INSTR in the current
section S is one per second. Then GE = 0 and after multiplication by a
.

Gaussianly distributed random number it will still be O . Thus the actual

A\
duration of any note played by KR+ INSTR during a Section S in which its

average distance between attacks is 1 second, will be the shortest duration

of which the instrument is capable (staccatissimo). There seems simply no

musical justification for this.

.1 sec instead of(

If however we make -the same requirement reading

ol
sec (where XR* INSTR wouldn't have time to play anything

but staccatissimo) it becomes perfectly reasonable, which leads to the formula

| MAX (10G (10 * 2) ,0)
= * S
GE = GN(IL,3) * 15610 * 2 MAX)

This work can all be done immediately after 27 « 1, so we write
,-“/f't
g . « MAX(LOG (10 * 2(T,J)),0)
q 3 & = G iy £
27.2 Store a%l valuﬁg CE(L,J) GN(L,J) L0G(10 * Z MAX (1, 1)) for

This range of lengths in the current section 1s now determined to be

from O (conventionally interpreted as .l1) to GE .

(Lengths > GE will
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be allowed with a very small probability, as will be seen in a minute.) The
mean length will be % GE (called XNU by Xenakis, XEN 387, p. 150).

We now want to distribute these lengths according to a Gaussian distribution
with a mean of XNU = GE/2 and a variance such that the actual length XDUR
of the current note will be almost certainly between O and GE . Xenakis
accomplishes this by first generating a standard-normally distributed number;

we do this as we did in Step 9, i.e.

66. PICK 0 <XL<1
67. PICK 0<X2<l

68. W = (SQRT(-2* LOGF(X1))) *COS(2* T *X)

He then multiplies this number W by GE*=* (ﬁ/Q) (on p. 1l41) or
GE * (»fi/?) (on p. 150) to get a distribution for the deviation of the actual
duration XDUR from the mean duration XMU = % GE .

Let us compute which of these values is more reasonable. If we use the

J2/4  figure we have
Deviation < % GE iff |W*GE+*.,2/4| <% GE
iff (w=2/4] < %

iff |w| <2 .

prob (-2 < W < +42)

So Prob (Deviation < % GE)

8 W2Z)> « 95 .
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So about once in twenty notes we'll get something unexpectedly long.

seems on the big side to me; once in 100 notes would seem more reasonable.

general for any coefficient C .
Deviation <.% GE. 1ff |W*GE*C| < % GE
iff |w*c| <%

iff |w] < %c .

Prob (-1/2C < W < + 1/20C)

So Prob (Deviation < % GE)

6(1/2c)

Now 6(1.82) = 99% sc 2C = 1/1.82 = .55 and C = ,225 ., (IF C were

4679 ~ - 16 as in Xenakis p. 141, we'd get an even smaller chance of a
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deviation bevond % GE). So we elect to choose € = .255 and the program

reads

69. TAU = GE(KR,INSTR) * .255 %W
70. XDUR = (GE/2) + TAU
71. IF XDUR < .1 make XDUR = .1 ; if XDUR > GN(XR, INSTR)

MAX XDUR = GN(KR,INSTR) ; OTHERWISE LEAVE IT UNCHANGED.

Rogers p.47 points out a problem in case the note N is glissando. Its
glissando speed is VIGL (##63~-65) which may be positive or negative,
(measured in semitones per second). 1Its starting pitch isk H (#45), its
highest pitch is HMAX(KR,INSTR) and its lowest HMIN(KR,INSTR) ; its duration
finally is XDUR . Clearly if VIGL > 0 and H + (VIGL* XDUR) > HMAX ot
if VIGL <0 and H + (VIGL*XDUR) < HMIN we are in trouble. Roger's
solution is as follows:

72.  If, ZZ(KR,INSTR) > 1 go to 86

73. If VIGL >0 go to 80

74, If H + (.VIGL * XDUR) > HMIN(KR, INSTR) go to 86.

75. If THIN=1 go to 78 i

76. XDUR = (HMIN - H)

77. Go to 86

78. VIGL = -VIGL

79. If H + (VIGL* XDUR) > HMAX(KR,INSTR) go to 76, else go to 86

80. If H + (VIGIL* XDUR) < HMAX(KR,INSTR) go to 86 |

8l. If THIN=1 goto Q%
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82.

83.

w
Wi

XDUR = (HMAX - H)/VIGL
Go to 86
VIGL = - VIGL

If H + (VIGL* XDUR) < HMIN(KR, INSTR)

Here (for checking) comes a flow chart:
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SHORTEN ‘ CHANGE
DURATION i DIRECTION
|
CONTINUE
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"THIN" is a variable which is = 1 1if the texture is so thin that cutting
glissandi short might leave an unpleasant number of silences. We arbitrarily
specify this as meaning that the (subjective) density of the current Section is
less than half the mean density of the piece; this can be determined as soon
as U 1is determined, i.e. we write

10.1. If U< R/4, set THIN =1, otherwise THIN =0 .

STEP 11

CHOOSE INTENSITY
Xenakis specifies (p. 143) 44 intensity forms derived from 4 levels

1,2,3,4 taken in combinations of 3 .

I) 4 STEADY ONES III) 6 RISING 434
1 1-+2 34194
2 : 1-+3 34123
3 e 14 34192
4 2-*3{ ' _ 34294

II) 6 FALLING 24 34223
49 3 34 2912
49 2 IV) 14 FALLING & RISING 24123
4+ 1 414 24194
342 413 V) 14 MORE
341 ‘ 4412 RISiNG&FALLII\!G,
241 4243 Analogous to IV

| 424
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86. Pick at random an integer IFORM from 1 to 44 (corresponding to
these intensity forms). |

Actually these IFORMS have a different meaning for different instruments.
We suppose the composer has nrovided a table which ascribes to every instrument
(i.e. to each pair (I,J) with 1 < I <K and 1< J <NT(I)) a number
LOUD (I,J) which =0 if I+ J can only give a steady volume (or only a
very short note), or if it has a built in decay (like a gong); in that case
only the first ten are-av;ilable, aﬁd one of the numbers 1-4 will suffice;
otherwise (if LOUD(I,J) = 1) any of the 44 forms are available. The needed

modification in 86 is trivial.
STEP 12

PRINT NOTE.

We want to specify (1) the starting time of the note (2) the instrument
number  (3) the pitch, in a form suitable'fpr musical transcription (4) the end
of the glissando, :if the note is a glissando (5) the duration (6) the intensity
form.

(1) The starting time of the note. The time TA determined in #32

was the starting time of the note measured from the beginning of the section.

It is therefore desirable to keep a record, as soon as a new section is
commenced, of the starting time of that section as measured from the beginning
of the piece.

A problem arises here because under certain circumstances sections may
overlap. The procedure in this case is to complete the note-print-out for

any section before starting the print-ocut for the next.

303



; The method (Rogers, p. 98) is roughly as follows. In 24 a number called
'ﬁA was calculated; this is the number of notes in the section. In 3 a
&umber A , the length of the'éection, was computed. After any note is
finished (i.e. after 86) we must find out (1) whether time for the end of
tﬁe section has been reached, and (2) whether the correct number of notes have
been computed for that section.

Suppose the answer to question (2) is "no'". Then we go on computing more
notes, i.e; we let N=N+1 and go to instruction (3). If on the other
hand N > NA , a new section must be started. However, it is possible that
the old section must also be continued, so that for some time the two sections

will overlap. We introduce a new variable TIME , which 1is changed every time

a new note begins. This is accomplished by writing

1.3 TIME = 0

and

32,1  TIME = TIME + T .

- Question (1) was whether the time allorted to the present section has been
exceeded. There are 3 cases, two of which subdivide.

CASE 1. The end of the present section has nct yet been reached, i.e.
TA + XDUR < A

In this case (Rogers, loc. cit), we ask ourselves whether we are in a low-
density situation or a high-density situation. If it is reasonable to wait

until time A (from the beginning of the section) in order to start a new
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section, we do so. Now for the most part the notes in the current section have

length < GE . So we ask if A - TA < GE ; if '"yes" thenset S=S+1,

TIME = TIME + (A-TA) and go to 1.1. 1If "no", we again let S =S + 1 but

this time begin the new section immediately (TIME = TIME + XDUR); go to 1.1.
CASE 2. (Which would be very lucky indeed). The end of the present

section has exactly been reached.
TA +-XDUR = A

We begin the next section immediately (same as the second subcase of the above).
CASE 3. We are already past the end (timewise, not notewise) of the

present section. Again we ask ourselves if we are in a high or low-density

situation. If the density is very high (say U > (3/4) *R) an overlap would

be too rough, and we proceed as in Subcase 2 of Caée 1. Otherwise we have

the two sections overlap, i.e. we must figure out when the time-limit of the

present section ran out and start a new éegtion at that point o&erlapping

the old one. Now: fer notes in the present section TIME = TA + T , where T

is the clock-time at which the present-secgion began. Hence 7T = TIME - TA

and the new section must start at TIME - TA + A . The code follows:

87. IF TA +XDUR <A AND A - TA < GE GO TO 90.
88. IF TA +XDUR >A AND U< .75*R GO TO 90.

89. TIME TIME + XDUR. GO TO 91

S0. TIME TIME + A - TA
91. s =8 +1

92. Go to 1.1
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FLOW CHART

TA + XDUR < A

TIME = TIME -

TIME

TIME + A - TA
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The rest of the note-printing routine is obvious,

(This takes place before the above.)

86.1. Print TIME in first column

86.2, Print KR+ INSTR in the second column

86.3. Print H transcribed as a musical note (e.g. perhaps Hl . H2
where H1 is the quotient and H2 the remainder when H + 9
is divided by 12) in the 3¢ column.

86.4. If ZZ(KR,INSTR) > 1 print * (meaning ''no glis",) in the
4th., column); otherwise print H + (XDUR * VIGL) transcribed
musically as in 86.3.

86.5. Print XDUR 1in the 5th column

87.5. Print IFORM, transcribed into musical notaticn, in the last

column, e.g. if 17 print FF > PP < FF .
STEP 13

IS SECTION OVER?

This was already taken care of in 87 < 92 above.
STEP 14

IS PIECE DONE?
There are two criteria for finishing the piece; either the number of notes
exceeds a certain maximum GTNS or the number of sections exceeds a certain

maximum KW . The code is as follows:
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First, let SINA be O at the beginning

1.3 SINA =0

In computing the data for Section 1, print an error message if NA > GTINS .
Otherwise set SINA = NA + SINA and stop if SINA > GINS (these steps to
follow #24 immediately). Finally, if after #91 we have S > KW we also stop

instead of returning to 1.1.

308



APPENDIX
CONTROLLED INDIETERMINACY - A FIRST STEP
TOWARDS A SIMI-STOCHASTIC

MUSIC LANGUAGE

[This is a mildly edited version of the talk given on Nov. 5, 1978.]

This paper is somewhat different from the cne announced in the programme
{and printed above]. This is because a Users' Mznual is hardly a fitting
tcpic for a fifteen-minute talk at the tail end of a four-day conference. Here

comes scmething of more gemeral interest, but related to the announced

subject.

I have been working on various ways of extending Yemakic's SML for
some years now; in particular I have with the assiéténce of my students
called Isaac and Solomon implemented a form of SML which inecorporatess the
improvement;-mentioned‘in the body of this paper, and interfaced it with

MUSIC S. {(The listing is available on request.) Mecre recently I have

become incerestad in the region between stochastic and deterministic music,

and hava come to regard SML as one end of a continuum. I have been trying

to develop 7 generalized SSML (semi-stochastic music language) which wili

t

g

permit the compocition of continuity, for example of Iilm music, so th
with a small number of computer instructions {(which incosvorate both the

constraints of the film and the real compositional choices) one czn

e

15

gonerate long passages of appropriata accompanying sound. Naturally th

involves giving up, or leaving only as options, somz basic features of

-

SML; for a trivial example, the lengths of the texturzlly countrasting
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sections of which an SML piece is composed would obviously not themselves
need to be stochastically generated, but could be coordinﬁted with the
action in apprepriate ways. The quite practical problem of composing e.g.
film music (for Anthony Hlll's abstract movie '""66 Canonical Variations'')
which though stochastic in its general character would have certain temporal
structuring, climaxes etc. because of its dramatic function gradually led
e to‘consider matters at once more philosophically basic and more
_Fechgiéally manageable, centring on the definition of a music that would be
at once deterministic and stochastic, or else sfochéstic in some parts and
deterministic in some other parts, without any loss of stylistic coherence.
I shall mention some of the thoughts that have occurred to me on this
subject. There was first the problem of what one could possibly mean by
deterministic musie; after all thoughAthere is probably a pretty general
consensus (modulo some minor musical and mathematical details) as t§ what

a random sequence of pitches or durations is, what we are seeking is a

continuum (called New Diapasoniby’Xenakis in his opening address at this

Conference) of which randomness or stochasticity is one end, and there is

i

no. such uniformity, given the diversity of musical cultures and styles as to

what to put at the other end in the case of pitch. In other words, there

"random pitches' with

seems no objective reason why we should contrast
e.g. XVIIith century common-practice as-thelother end of the spectrum,
rather than with say XVIth century polyphony, dodecaphony or the ancient
Korean style. There is, to risk repetition, a fairly well-defiped notion
of fandom pitch, but seemingly no culture-independént notion of non-randowm

or deterministic pitch-structure. [But see Rothenmberg's current series of

articles in "™Mathematical Systems Theory".] Sc though we have an idea of
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what it would be like to make music more and more random (for example in a
~ £f{1m, where the progressive disintegration of a personality might be
‘reflected in the increasing fragmentation of a theme or (more subtly) of

a melodic style) what we mean by making music, at least in its pitch

aspects, less and less random seems totally culture-bound and lacking anything

approaching a precise mathematical definition. There is certainly one

solution, namely that non-random melody consists of a mere reiteration of

one frequency, which makes impeccable musical and mathematical sense; this

is the foundation of many of Hiller's compositions (e.g. some movements of
"Computer Cantata") yet I personally would feel happier with something more
sophisticated and subtle than this; for example'éne could accept as given

a number of "common-practices' and 'modulate" Betﬁeen them; a typical exercise
in this kind of modulation might be WRITE A LUTE PIECE WHICH BEGINS IN THE
MANNER OF DOWLAND AND '"MODULATES'" TO THE STYLE OF XVIII-th CENTURY JAPANESE
KOTO MUSIC. . A starting point in this direction might be an analysis of
Ponsseur's "Wild Horse Ride" whiﬁh takes-us from Mozart and early Beethoven
via Schubert, Brahms and Wagner to ScHBnbgrg énd Webern; I know the
"modulations' are implemented by means of certain permutations of the
integers 1 through 12 which take e.g. major triads after a sufficient number
-of applications into "Webern-triads' like CFB or CF#B,‘but I have no idea
whether this technique can be programmed. In any case, since I did not know
how to do this, I passed to something less unapproachable, namely the
contrasf of regularity and randomness in fegard to rhythm. Here the other
end of the spectrum is simply and trans-culturally periodicity; and so I was

led to the slogan degree of periodicity, which is the focus of this talk
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from here on in.

A coﬁple of my earlier atﬁempts to work out a coexistence of periodic
and aperiodic rhythm might be mentioned briefly here. One of them, the
percussion piece DIALECTIC composed for Jan Williams at S.U.N.Y. at‘Buffalo
and hopefully to be performed. there soon, consisted of an underlying
deterministic substructure ("background" in the Schenkerian sense, based
on the theory of rhythm of Joseph Schillinger, the father of computer musié
long before Xenakis. Hiller, or even computers.) with a stochastic foreground.
This seems to me a viable method of composition (somewhat like tachistic
brushwork over a firmly limned geometrical drawing) but is a bit off from
our main task which aims ultimately at a continuum or New Diapason
incorporating both random and deterministic elements in controllably greater
and lesg degree. Another venture of mine was an ill-fated collaboration a
couple of springs ago with the Pittsburgh composer and filmmaker Victor

Grauer, which aimed to formulate a mathematically precise and aesthetically

viable notion of;dggrge of periodicity which he wished to employ in his omne-
second abstract movies. One second equais 24’frames, and I was driven to
invent a_measure of degree of asymmetry og 24 things in a row which turned
out, in my view at least, to be matheﬁatically intractable and aesthetically
unilluminating. "24 things in a row' meant both the 24 frames perceived
temporally one after the other, and the filmstrip of blacks and whites

lying on my desk before me. This double meaning (spatial and temporal) of
24 things in a row'" was in my view (though not in Victor's) responsible

for the failure of the project. A fundamental lesson I learnt from this

failure was the difference between space and time. [And another one was the
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slogan "degree of periodicity" whose implementation I have long sought and
now belieﬁe, as you shall see, that I have found.] A rhythmic canerizans
for example in the mannér of Messiaenhas an obvious symmetry to the eye
{even more when laid ocut as a filmstrip than when written in conventional
music notes) which is more likely than not completely imperceptible to the
ear, My new brother-in-law Anthony Hill the English constructivist artist
has made quite remarkable progress towards a definition of visual or
spatial asymmetry (which makes the;later works of Mondrian in a precise
sense maximally asymmetric); I am convinced that this definition is quite
incapable of musical or temporal application. Speaking of rhythm in
painting, or of the symmetry of a musical phrase, seems to me to lead

necessarily to aesthetic disaster; I hold to this radical distinction between

time and space because I am convinced of the primacy of change, and because

my philosophy stems more from Heraclitus than from Plato.

That time is not space, and that motion is not the grapﬁic and simul-
»tanaous represengagiqn of motion (as in the inert filmstrip or score lying
on my desk) does not mean however that time an& motion cannot be treated

mathematically; and my search for a concept -of degree of periodicity in

musical (and hopefully also in filmic) rhythm was facilitated by a seren-
dipitous cross~fertilization between Xenakis and Eisler. Xenakis, folldwing
Poisson, teaches us that absolute aperiodicity corresponds to a logarithmic
distribution of durations. That is, you take a random number between zero
and one, take (not the number itself, as everyone knows who has ever tried'
to make random durations by feeding white noise into a sample-and-hold, but)

the negative of its logarithm (scaled by a constant) and one comes out with

the unique distribution of durations which has the property that whether or
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not there is silence (no attack) during one time span has absolutely nothing

’

to do with whether there was silence in the preceding time span - more

yzprecisely, the probability of no-attack in time £t is the product of

the probability of no-attack in time £ by the probability of no-attack in

time Lty . Eisler, early in his book on fiim music (under the rubric of

the False Collective) states as a problem: How dces one make music to describe

the Mobilization of an Army? (Recall that on Eisler's approach music

 reflects the subjective aspect of ‘the action on the screen.) At the beginning

one sees, say, a Mobilization Notice and observes people reading it, going
home, preparing to depart for the war, bidding farewell to their families
etc. The subjectivity is shocked, and erratictally numbed or painful. As
they go out into the streets their subjectivity becomes more organized and
anonymous, they thank of themselves less and less as individuals, more and

more as parts of One Thing (the Bose Kollektivitat). I asked myself,

specializing Eisler's question; how this is reflected in the rhythmical

character of thq accompanying music. Inérease the degree cf periodicity!
Here is my salution (the fourth or fifth,Awhich at last seems to make

both musical and mathematical sense). Co;sider the extremes; in the Xenakis-

Poisson distribution, one picks random numbers from the whole interval {0,1)

with equal probabilities and takes their negative (natural) logarithms. At
the opposite extreme one takes one point (namely 1/e) frdm this interval
and takes repeatedly its mnegative logarithm obtaining one one one one one or
complete periodicity. A gradual narrowing of the interval from which the
rand&m numbers are selected before taking their logarithms corresponds to a

gradual increase in periodicity. More specifically if we define the degree
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of non-periodicity of a continuity by

*

_ Maximum duration - Minimum duration (1)
‘Average duration

D

(which may not be the best way, though I have found none better), the duration
of a note (time between attacks) is determined as follows: Find x and y

between O and 1 such that
x1n (x) = yln(y) . )

3

[}
T

x/y

where D 1is the deviation defined by (1) abqve. Pick a random number k
between x and y and set duration = 1& In(k) where & is the average

duration. Requirement (3) above amounts to

i.e. to max:imum duration - minimum duration = -% ln(y) +%1ln(x) = £D = D
times average du;ééién as reéuired by (1). Requirement (2) guarantees that
L = =% in(l/g) is indeed the average duration (see below). Implementing -
the above by a computer program is straightforward and fast (using a table
lock up of x In(x) tabulated from O to 1 by increments of .01 to
solve equations (2) - (3) for x and y).

But we can 4o more; we can cbtain a type of polyrhythm in which e.g.
one voice may get more and more regular as another gets more and more
irregular. The '"'score' of such a polyrythm, to be fed in suitably coded
form to a computer, assigns to each instrument two graphs, one giving
density (1/&J number of notes per second) as a function of time, the other

-

giving D of (1) as a function of time. Experiment shows that pilecewise
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1linear graphs work well. After each note is terminated, D and 1/k are
'iupdated from the graphs, and the computation just described picks a new
inote-length.

[A tape was then played, a study for "LXVI CANONICAL VARTATIONS'", for

"score'" consisted

ﬁhree Chowning~type simulated percussion instruments; its
of 6 graphs of the kind just described.]

For the delight of the curious, I append a proof of the weird-locoking
formula (é). Consider a compositisn for one instrument consisting of N

notes whose durations are determined by the formula

duration = -§ In(k)

where k is flatly distributed between 7 and x (O <y<k<x<l)

Let (u,u + du) be a little subinterval of (y,x) . Then the number of
chosen numbers k that lie in that subinterval is ﬁgg/(g - v) , and the
length of the note associated with such a k is -f In(u) . So the con-
tribution of {u, u + du) to the length of the piece is -2 In(u)Ndu/(x - y).
Integrating with;réépéct to u we get |

w”

- & 1n(u)Ndu/(x - y) = 4N/ (y - x)[u 1n (ulog(u)- g];’z-

I e— |

e xIn(x) - x - vin(y) +y
- Yy - X

as the length of the piece. The average note iength is then

Xiln(x) - X - yln(y) +y
y-x

{=

and we need this to be This will'happen just in case the numerator

]
o
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and denominator of the fraction in brackets are equal, i.e. just in case (2)

holds, q.e.d. (If D =0 set x=y=1/e .)
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