CHAPTER 4

RANDOM SELECTION I: DIRECT RANDOMNESS

No treatment of decision making can be complete if it
_neglects randomness. Random decisions are made by consulting
some process whose Qutcome is unpredictable, such as a roll of a
die. Such decisions are -2 most appropriate in situations

admitting many equally suitable (or equally odius) options.

L,1 TERMINOLOGY

We will refer to a specific instance of a process yielding a

random outcome as a random incident. The collection of all

possible outcomes is called the range of the process. Ranges

fall into two categories:

1. In a discrete range, any two outcomes have a finite
number of intermediate outcomes. For example, if we

spend an hour fishing in a lake, we might catch two

fishes, or three fishes, but never two and a half

fishes.

2. In a continuous range, any two outcomes have an

infinite number of intermediate outcomes. Random
durations typically have continuous ranges: the time
required to catch a fish might be any portion of an

hour, or longer.

We say that a random incident or an associated random decision is

weighted, or biased, when some outcomes are more likely than

others. The weight, or probability, of an outcome measures

its relative likelihood, and the collection of weights for all

outcomes comprises the distribution of outcomes.

We refer to an outcome produced by a specific random

incident as a sample. A collection of samples is called a

population. The mean of a population gives the average of
all the samples.
An important distinction exists between random

distributions and statistical distributions; populations do

not need to be random. Where randomness deals with the
unpredictable behavior of individuals, statistics are concerned
with whole populations. It is quite possible for a population to

obey a given statistical distribution and yet be wholly

4-3

predictable; for example, the population:

has just as many zeros as ones. The relationship between
statistical distributions and their random counterparts 1is
evident in the fact that if we paint these zeros and ones on ten
balls, place the balls in an urn, mix them around, and draw a

: bal%(“gigﬁy%he likelihoods of the ball showing a zero or a one

would be equal.

An important facet of randomness 1s the independence of

random incidents. Independence is expressed in the fact that the
outcome of a random incident remains wholly unaffected by any
previous incident. For example, the probability of obtaining
heads from a toss of a coin is 1/2. It remains 1/2 no matter how
many heads have been tossed in the past. Extrapolating from this
fact, we see that not only is a:head equally as likely as a tail,
but any sequence of heads and tails is equally as likely as any
other sequence.

To see why any sequence is equally likely, perform 80
"random experiments", each consisting of three successive coin
tosses. Divide these experiments into two groups, I and II,
according to whether the first toss ylelds a head (group I) or

a tail (group II). Since each outcome is equally likely, each of

L

the two groups will hold about 40 experiments. WNow, divide group
I and group II each into two subgroups according to whether the
second toss yields a head (subgroups I-A and II-A) or a tail
(subgroups I-B and II-B). Since each of these outcomes is
equally likely, each of the four subgroups will hold about 20
experiments. Finally, divide each subgroup into two
sub-subgroups according to whether the third toss yields a head
(sub-subgroups I-A-1, I-B-1, II-A-1, and II-B-1) or a tail

- (sub-subgroups I-A-2, I-B-2, II-A-2, and II-B-2). Again, since
each outcome is equally likely, each of the eight sub-subgroups
will hold about 10 experiments. At this point, we have
constructed one category for each possible combination of heads
and tails, and it is clear that the probability that an
experiment will fall into any one of these categories is 10/80 or

1/8. Table 4-1 summarizes this result:

Table 4-1: Outcomes and relative probabilities of

three coin tosses.

4.2 A SURVEY OF RANDOM DISTRIBUTIONS

4

2= 29
820" 960" €80 LLL® 6€L" L9L" 6EL" LLL® €80° 9G0° 830" A3 TSsueq
L Z € 74 g 9 S 14 € g L IuSToM
al LL oL 6 8 L 9 g 4 € 4
awoo3InQ
b-B fL
8/1 TR} iTe)} 1iT1el G-H-11
8/l peay TR} ITR} L-g-11
8/L ites} peay ites G-V-11
8/1L peay peay TR} L-V-11
8/1 TTR) TR} peay Z-g-1
8/1 peay TR} peay L-g-1I
8/1L ITE} peay beay ¢-V-1I
8/L peay peay peay L-vV-1
Lr11TQRQOId € ssol Z SsoJ L SsoJ £xo393e)d

45

L,2,1 Uniform Randomness

The least biased random distributions are uniform
distributions. Outcomes of a random incident are uniformly
distributed over a discrete range when each outcome is equally
likely. For example, throwing one six-sided die produces uniform
integers from 1 to 6.

Since over a continuous range, the likelihood of any

"' specific outcome 1s negligible, our definition of continuous

uniformity must be subtler. We say that a random incident is
uniformly distributed over a cqntinuous range when, given any two
equally sized regions wiﬁhin tﬂgi range, the likelihoods of an
outcome falling withinﬁ%gigw;egion are equal. For example,
suppose we have a random incident whose outcomes are uniformly
distributed over a continuous range from 0 to 20. Then the
likelihood of an outcome falling between 0 and 10 is the same as
its likelihood of falling between 10 and 20. Similarly, the
likelihood of an outcome falling between 2.5 and 3 is the same as
its likelihood of falling between 4.5 and 5 or its likelihood of
falling between 18 and 18.5.

Uniform randomness over continuous ranges does not occur
directly in everyday experience. However, continuous uniform

randomness is relatively easy to simulate using a computer. It

also provides a convenient basis for deriving other types of

L-6

randomness)éincluding discrete uniform randomnessg.

4.2.1.1 Continuous Uniform Samples - The most common method of
generating uniform samples over a continuous range is the "linear
congruence" method introduced by Derrick Henry Lehmer (1951;

discussed in Knuth's Seminumerical Algorithms, pp. 9-24). This

method is not truly fandom, but it produces a sequence of uniform
éamples which lacks, for mostvpractical purposes, any discernable
pattern.

The real-valued library function RANF implements a
simplified version of Lehmer's method which is sufficient for our
purposes. FEach call to RANF returns a real number which is
uniformly distributed between 0 and 1. The DATA statement (line
2) provides the value of SEED only for the first invocation of
RANF; each new call transforms this value. RANF multiplies SEED
by 877 (line 3), pares off all digits left of the decimal point

_ the
(1line 4), and returns¥new value of SEED as the result (line 5):
-- Programming example 4-1: Listing of function RANF --

The variables FACTOR and SEED adhere to special criteria

affecting the "period" of the random sequence, so these variables

4l - (:)C\

qeadad
(J3NVYH = HSVYYL X N
(sswt3 0g) op Z N &
pua
udnasdg
G338 = 4NVH

ﬁﬁammmuxﬂLHquOHL - 033s = 433s
033s # HO1lOvd = Q33Ss
/B6S8LEB2°0/0335° /0" £4L8/H0LDV S B3ep

()4NvVY uoTtaouny ~5 "3

UM NDONS

47

should not be altered directly. A new sequence of samples may be
obtained by "cycling" RANF an arbitrary number of times at the

outset of the program. The following excerpt of code cycles RANF

50 times:
-- Programming example 4-2 --

» Figure U4-1 graphs a population of 218 consecutive samples
.‘ . o L&‘\ vvuex‘f
produced by RANF. This graph verifies that although ®& method
of generating samples is actually determinate, it 1s no simple

matter to predict any sample from its predecessor.

Figure 4-1: Graph of 218 consecutive samples generated
by RANF - The horizontal scale indicates successive
calls to RANF, while the vertical scales gives the
magnitude,of-each sample. Magnitudes are distributed

uniformly over a continuous range from 0 to 1.

The best way to appreciate the distribution of a randomly
generated population is to construct a histogram. This
procedure involveéﬂl) dividing the range of outcomes into equally
sized regions andGZ) graphing the number of samples in each
region. Figure 4-2 ?resents four histograms of samples produced

by RANF. The histograms are cumulative, that is, the first

[
90

200 210

190

{70

160

110

100

80

70

50

40

20

10

o
Q

0.75

0.50 {

0.251

000

zlO samples

e <y

6.0 (Y] [X3 o3 [X] (X 0.8 (] X} CX 20
GIOO somples
5
4
s
e
I AR L1 L
0o 01 oe o3 0.4 0.8 X 0.7 08 o, X
1000 samples
0
26
20
15
10
[
0.0 0.t oe. 0.3 0.4 0.8 0.6 [+x 4 0.8 0.9 1.0
10000 somples
200
1%0
100
80
0.0 .t 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 LO
$'\c> 4“2‘
— r

- T

4-8

histogram graphs 10 samples, the second histogram combines those
10 samples with 90 new samples for a total of 100, the third
histogram combines those 100 with 900 new samples for a total of
1000, and so on. Notice that the population of 10 samples is
certainly‘ggg uniformly distributed; we can only begin regarding
the spread as even with populations on the order of 100 samples

or greater.

Figure 4-2: Histograms of samples generated by RANF -
Each bar. tallies the number of samples falling within

an interval of width 1/50.

EV\ u’~va\ \Lu\
L,2,1.2 Discrete Uniform Samples - The iwéegesr library function

IRND produces random integers over the range from 1 to NUM, with
equal likelihood for each outcome. IRND first scales the output
of function RANF by NUM. This procedure yields a sample which
has an equal chance of falling into the region between 0 and 1 as
it has of falling between 1 and 2, between 2 and 3, and so on up

Nuwm Auwm
to the region between %-1 and §. Paring off the fractional part

Num

gives uniform integers from O to ¥-1, so IRND must add 1 to

achieve the desired range.

{ '%LL

pus
uuangad
31T pus

"esied” = §300NS
asi1a

8anJa3 = §330NS

uaya (d°aT"()dINVH) JT
5300ns Teot1Bot

(d)s300ns wot3oung

pua

i udnasd

(L+(H)XTJTIINIVA = L7INS3Y

INIVA Aeaae ut Adagus Butpuodsaddoos dn >ooT
(WNN)3eOoT2 % (J4ANVH = d

Jaqunu wopued paTeos ajedauag

(1)3NYA UoTsuUawIp

ﬁZDzﬁm34<>,hJ3mmmu<MJ< auTznoJugns

pus

uJdnasd

b o+ ((WNN)3EOTJi()INVH)XTIT = ONHI
(WAN)ONHI uwoTzouny

TN ONOO

-sNuNMY

CUMTON O,

S-72

M,V.xm

4-9

-- Programming example 4-3: Listing of function IRND --

The library subroutine ALEA is based upon a feature from
Koenig's PROJECT2 program (Koenig, 1970b) which returns one
option out of a "supply" (Koenig's term for a discrete range)
with equal likelihoods for each option. ALEA requres three

arguments:

1. RESULT - ALEA selects one element of array VALUE and
transfers its contents to this location (line 6).
RESULT may be either an integer or a real.

Csapply ™D

2. VALUE - RepertoryYof options. VALUE must be an array

whose dimension in the calling program is NUM and whose

type matches that of RESULT.

3. NUM - Number of options. NUM must be an integer.

-- Programming example U4-4; Listing of subroutine ALEA --

h-10

4.2.2 Weighted Discrete Randomness

We have all experienced welghted random incidents. The act
of rolling two six-sided dice, for example, is six times more
likely to produce a seven than it is to produce a two. This
happens because there is only one way of producing a two--rolling
two ones--while there are six ways of producing a seven. One may
roll a one and a six, a two and a five, a three and a four, a
four and a three, a five and a one, or a six and a one. Table

L4-2 gives the distribution of weights for two dice:

Table 4-2: Weights and densities for numbers rolled

using two six-sided dice.

Often we might wish to relate the number of times a specific
outcome appears to the total size of the population. If n
represents the number of specific occurances while N represents
the total size, then the proportion n/N becomes a very useful
kind of weight which we ca}l a density. A distribution of-\
densities always sums :%;2523. Densities make it possible to
compare distributions of different-sized populations. The

density function of a distribution gives relationships between

each outcome in the range and its density. Table 4-2 also gives

densities for each possible number rolled by two six-sided dice,

b-11

as derived from the weights (note 1).

4.2.2.1 The Bernoulli Distribution - This archetypal
distribution honors the mathematician Jakob Bernoulli
(1654-1705). It is also called the point distribution. The
Bernoulli distribution models the simplest random incident: a
single trial with two possible outcomes, success and failure,

p of success. Tossing a coln is the

-

and a fixed probability
simplest example; here p = 1/2. Equation U4-1 expresses the
density function when -1 (.true.) represents a success and O

(.false.) represents a failure:

ihon

P (Equation 4-1)
1

£(-1)
£(0) - P

_ hgkﬂ—vduné ,

The I=wetewd library function SUCCES returns
Bernoulli-distributed successes and failures with probability of
success P. TFigure 4-3 presents histograms of samples produced by

SUCCES.

-- Programming example 4-5: Listing of function SUCCESS --

4V

10 somples 20 samples 40 somples uso samples '°I60 samples’
9 -
23 25
e - s0 100
45 %0
7 " 20
10 40 ao
e 9 2 70
[® 18 30 80
? 28 so
4 [
10 20 40
3 [3
4 18 30
2
3 s 0 20
. 2
\ s 1o
true false true false true false true faise true folse

iy 45

..] o o v
P s s

Y
—
-
«
4
i

-

h-12

Figure 4-3: Histograms of samples produced by SUCCES -
Each bar tallies the number of successes (.true.) and

failures (.false.) generated by SUCCES with argument
P=2/3.

4,2.2.2 The Binomial Distribution - If we initiate n
consecutive Bernoulll trials, each with probability p of
éﬁccess (for example, if we toss a coin n times) then the
number of successes follows a binomial distribution. Possible
outcomes range from 0 successes to n successes; Equation 4-2

gives the density for an outcome of 1 successes (note 2).

f(i) = nt p (1-p) (Equation 4-2)

'Graphs of binomial densities for various values of p appear in
Figure 4-4., The mean of a binomial distribution, which
predicts the average outcome over a binomial population of

samples, is np.

Figure 4-4: Graphs of binomial densities - The

horizontal scale gives possible outcomes, expressed as

001

002

s2|dwos 000

O

sajdwos Q0I

! 0

sa|dwos Q)

€

080=d

0g0=d

o2

2

18

ge0=4d

og

numbers of successes obtained during sequence of 9
Bernoulli trials. The vertical scale gives relative
likelihoods for each outcome.
ey —val ud
The inteser library function IBINOM produces binomially
distributed samples assuming N Bernoulli trials, each with
probability P of success for each trial. Figure 4-5 presents

~_ histograms of sémples produced by IBINOM.
-- Programming example 4-6: Listing of function IBINOM --

Figure 4-5: Histograms of samples generated by IBINOM
- The horizontal scale in each graph gives possible
outcomes, expressed as numbers of successes obtained
during sequence of 9 Bernoulll trials with probability
1/3 of success. The vertical scale tallies the number

of times each outcome occurs within the population.

4.2.2.3 The Geometric Distribution - If we initiate
consecutive Bernoulli trials with a fixed probability of success
p until one trial fails (for example, if we toss a coin

repeatedly until it comes up tails); the number of successes

pua
aeadad
I + WO39I = W039I
udanisd ((d4)s330Ns 30ur) 4T
op
0 = WO39I
(0" L+9AV)/9AY = d
s300ns T1=o1Bo0t
(9AVIW0O39I uvoTzouny

pua
udniad
aeadad
L + WONISI = WONISI ((d)S300nSs) 4T
ﬁmmEﬁP Zu op
0 = WONIgI
s30ans teordoT
(d°NJWONIGI uoTaouny

TNOTLONOO

STNNM<TWNMONC

L~ %3

7~k X3

ot

T

\ o1

I% ¥

A

¥3_ €2 23 12 0z 6 8 L 9 sl 4 sz W ol)
sajdwos QQOI
$3 €2 72 12 02 6 @ U 9 9 H & U U o zZ_ 1o
sajdwos OO}
¥2 €2 32 12 03 & 8 U % S # g 3 0 o z2_ 1o
sajdwos Q)

2

¥2 €2 22 12 03 sl 8l U 9l L1 - T 1] o 8 8 I3 9 9 L4 £ 2 1 0
S0"
oi°
e
o
§T
.

6’0 = d) OOl = uoaw
tunwuu_woun_ﬂh_!.m_!m_N_:o_achnmc.mN_o
-
-
ol
si°
oz
x4
og’
(€80 = d) oG = uosw
vunuuu_uouw.a_h_o_n_!n_u_:o.mnhonvmu_o
-

{0
o1
e
o
-r4
o

(£9°0 = d} 02 = voaw

b1k

follows a geometric distribution. Posgsible outcomes range from O
upwards, though large values become increasingly improbable.

Equation 4-3 gives the density of 1 successes.

(i) = (1-p) pl (Equation 4-3)

Graphs of this density function for various values of p appear
. in Figure 4-6. The mean of a geometric distribution, which
predicts the average outcome over a geometric population of

samples, is p/(1-p).

Figure 4-6: Graphs of geometric densities - The

horizontal scale gives possible outcomes, expressed as

numbers of successes occuring before one failure during

an open-ended sequence of Bernoulli trials. The

vertical scale gives relative likelihoods for each

outcome.

' J\-N,Sw-\na\ ued

The Sxgem@Emy library function IGEOM produces geometrically
distributed samples with mean AVG. It begins by using AVG to
determine the probability of success P for a single Bernoulli
trial (line 1). The loop (lines 5-8) counts successive trials up
to the first fallure. Figure 4-7 presents histograms of samples

produced by IGEOM.

b-15

-- Programming example 4-7: Listing of function IGEOM --

Figure 4-7: Histograms of samples generated by IBINOM
with AVG=5.0 - The horizontal scale gives possible
outcomes, expressed as numbers of successes occuring
before one failure during an open-ended sequence of
Bernoulll trials. The vertical scale tallies the
number of times each outcome occurs within a

population.

4.2.2.4 The Poisson Distribution - This distribution was
formulated by Simeon-Denis Poisson (1781-1840). It models
occurances of rare events over a period of time, for examples:
the number of beta particles detected from a radioactive source
in a second, the number of fish caught from a large lake in an
hour, the number of lightbulbs failing in a month. We shall
defer a speéific motivation of the Poisson distribution until we
encounter the "exponential" distribution later in this chapter.
Like geometrically distributed samples, outcomes of the Poisson
distribution range from 0 upwards. Equation 4-U4 gives the
~density of 1 events for the Polsson distribufion. The

parameter u gilves the average number of events in a period.

Af/
BRoTS

P

b-p
bl ¢t 0
saldwos QOOI
P8 2l E o 86 8 L 9 ¢ b ¢ 2 | 0
saldwos QQI
PLoel 2 11 ot 6 8 L 9 § b ¢ 4 I ¢}
saidwos QI

2

bi

gl

2l

hodl

gl

2l

§°'G = ubsw

| [¢]

bl

€l

2l

G'2 = uoaw

[

0’1 = uoaw

h-16

f(i) = e u (Equation 4-4)

Graphs of this density function for different values of u

appear in Figure 4-8.

Figure 4-8: Graphs of Poisson densities - The
horizontal scale gives possible outcomes, while the
vertical scale gives relative likelihoods for each
outcomne.

\'.\.rgsu“ w: D\EJ

The fmsm@er library function IPOISS generates

- ottt s 3

1 S S g e S

Poisson-distributed samples with mean AVG.

e o o e v M | W WP .
e o S s =

o e L R PSSR
Lt . S A ¥ ¥ e S D

presents histograms of samples produced by IPOISS.

-- Programming example 4-8: Listing of function IPOISS --

Figure 4-9: Histograms of samples generated by IPOISS
with AVG=5.8 - The horizontal scale gives possible
outcomes, while the vertical scale tallies the number

of times each outcome occurs within a population.

pus
UJdnaadg
(1)3nvA = 17ns3d
ANIVA Aeaue ut Aujus Butpuodssduoo dn >oo-
1037138 <03 saybrem peg, doas (WNN'aB°1) 41
aeadau

M- Hd =4

3Tx3 (M°3T7°4) 4T

(I)LHOI3M = M
(WNN‘L=I) op
-“agqunu sTy3 yatm ButubrTeE uctBad pajyBtam 3382007
(J4ANVH % WNS = H
Jagqunu wopued paTels ajlBdJdauaq
(LYLHOIAM (L)3NTIVA YoTsSuswIp
(WAN‘WAS LHOI3M3NTIVA“1INS3Y) LJ3713S auTanodgns

pus

aeadad
Il + SSI0OdI = SSIOdI
udaniad (4°37°0) 47T
(YINVH = 0O = Db

op
0 = SsI0dI
0'L = O

(aAv~-)dxa = (4
{(9AV)SSIOdI uoTzouny

=FA
L
gl
2L
Ll
ot
6
8
L
Q
S
174
£
2
L wmu:% A
oL
6
8
L
=
S
174
£
2
L %4«

L-17

< 4h.2.2.5 Stored Discrete Distributions - In automated

composition it is often necessary to select random options
directly with respect to the individual weights. Sometimes these
weights may be specified by the composer; 1in other cases, they
may derive from a random process which does lend itself to
algorithmic coding.

The library subroutine SELECT returns one option from a
repertory relative to a stored distribution of weights. It

requires 5 arguments:

1. RESULT - SELECT chooses one element of array VALUE and
transfers its contents to this location (line 13).

RESULT may be elther an integer or a real.

2. VALUE - Repertory of options. VALUE must be an array
whose dimension in the calling program is NUM and whose

type matches that of RESULT.

3. WEIGHT - Relative welghts for each option. WEIGHT must
be a real array whose dimension in the calling progranm
is NUM. Each weight must be zero or greater, and at

least one weight must be positive.

4, SUM - total of all NUM weights in array WEIGHT. SUM

4-18

must be real.
5. NUM - Number of options. NUM must be an integer.

Figure 4-10 illustrates how SELECT chooses one of 15 options
relative to a stored distribution of weights. The random value R
(line 4) is distributed unformly between 0 and SUM. Sizes of the
NUM regions of this range associated each option are determined
‘tﬁy the corresponding weights. Consider two arbitrary options, 1
and J: If option 1 has twice the weight of option j, the region
of the total range associated with option 1 is twice as large, so
R is tWice ag likely to fall within the ith region as the jth

region.
-- Programming example 4-9: Listing of subroutine SELECT --

Figure 4-10: Iechanics of subroutine SELECT - Each
column represents one iteration of the ldop (lines
6-10), and the number at the top of each column
indicates the value of I for that iteration. The black

stripe represents the variable R.

If the weights remain constant, there are two steps one can

take to speed up selection of an option. The first step is to

4“.‘(61.1
8 8 10 10

o
] ~
] @

©

o

R ENE) &) Hw v -
T ———————— T
[e——— | [Jo
I O I
| T 1
1 T 1 1
[pe—TT] T T 1
[T 1 [TT 1
Ow o~y O [$)] H UM —

v] O OO EREEN ny ign
12 12
OO0 OH0HHEEH IR NN
14 14

-+

5
D
e
T

N
5

\

| e TR e

pua
(1LI)aNvA = Lns3ay
3INIVA Aedaae ut Augus Butpuodsasauoo dn >ooq
aeadsd

4T pusa

L + I = I
asTs
I =21

uaya (g a1°d) 41

(1)aONNO8 = g

2/ (2l + 1) =1

3TX8 (2I1°86°11) It
op
WON = 21
l = I
Jdaqunu sty3 yaTm ButubTTe uwotbad psayBram =ze007
()ANVH = (WNN)ONNOg = Y
Jdaqunu wopued paTeos ajedsuag
(r)aNnog‘ (L)aN VA uoTsuawTp
(WAN‘GNNOE 3NTIVA“LINS3LY)NIOIND auTanodgns

TN ODONOOD

L-19

compute boundaries for each region of the range from 0 to SUM.

This step obviates the need to pare down R with each iteration.
The fact that these boundaries proceed in a strictly increasing

sequence makes possible the second step, a binary search for

the region holding R. (Xnuth discusses binary searches on page

407 of Sorting and Searching). The library subroutine QUICK

implements these two steps. Figure 4-11 illustrates how QUICK
works for the same distribution of weights illustrated in Figure

-- Programming example 4-10: Listing of subroutine QUICK --

Figure 4-11: Méthanics of subroutine QUICK - Each
column represents one iteration of the loop (lines
8-17); the number at the top of each column indicates
the value of Il for that iteration. The black stripe

represents the variable R.

4.2.3 Continuous Weighted Randomness

The usual procedure for generating non-unform random numbers

over a continuous range is not to simulate the random process

e

|

Non-uniform range

1

Uniform range

o

4 -1

[et tsusiiitiins TN

4-20

directly (as with the library functions IBINOM and IGEOM) but
rather first to generate a uniform random number and then to

subject this number to a statistical transformation which

"maps" each point in the uniform range into a corresponding point
in the non-uniform range. Figure 4-12 illustrates how the |
relatively steeper portions of a statistical transformation act
to spread uniform samples over correspondingly wider regions of

the non-uniform range.

Figure 4-12: Mechanics of a statistical

transformation.

4.2.3.1 The Exponential Distribution - The exponential

distribution is the continuous analog of the geometric
distribution. Exponential distributions model lifetimes of
physical entities such as atomic nuclei and lightbulbs. We might
say that they result from consecutive Bernoulll trials, each
occuring over an unmeasurably short period. If a trial succeeds,
the entity survives, otherwise it 22;;%; The probability of
survival approaches gnity; however with so many trials, the
expise

entity is bound to ## sometime.

An inherent assumption of an exponential distribution is

h-21

that the probability of failure is independent of past history.
For example, nuclear physicists regard the probability of a
nucleus throwing out a beta particle in a given moment to be
unchanged whether the nucleus has existed previously for five
minutes or five centuries. Such a nucleus grows no less stable
with time; the drop in probability as lifetimes increase results
solely from the fact that it has to survive through one moment to
exist during the next.

Exponentially distributed samples range upwards from 0. The
1musica1 attraction of the exponential distribution is the balance
it achelves between short and long durations: The cumulative
amount of time occupied by long durations equals the cumulative
amount occupied by short durations. Equation 4-5 gives the

density at any positive value x.

f(x) = ue ' (Equation 4-35)

The mean, u, ‘gives the expected lifetime of the entity under
consideration. The mean is also called halflife because it
predicts the amount of time required for half of a large
population of identicai entities to die away.

The basic algorithm for producingvrandom samples adhering to
a pure exponential distribution involves generating a random

sample X uniformly between 0 and 1 and then subjecting X to the

statistical transformation given by Equation 4-6 to obtain an

exponentially distributed sample Y:

Y = -u log (X) (Equation 4-6)

feobrote

IazerrthmE=r Figure 4-13 illustrates how this statistical
~transformation produces exponentially distributed samples from
uniform ones. Notice that because the transformation slopes
downward, 1t has the effect of mapping large uniform samples into
small exponential samples, and vice versa. Figure 4-14 presents
histograms of exponentially distributéd samples obtained using

this methbd.

Figure 4-13: Generating exponentially distributed

samples.

Figure 4-14: Histograms of exponentially distributed
samples - Each bar tallies the number of samples

falling within a region of width 1/10 for a mean u=2.0.

John Myhill (1979) has developed a method for implementing a
continuum of random distributions ranging from complete certainty

that a sample will be located at the average value u to a true

ad

i ML e

o

e

bi-b

os 13 o 3 13 92 a3 1l o't S0 o0
R RRRRRERRRNANNRNEEEN o
[ANUNRENEE] ool
osi
003
093
oo
o%e
oor
ogy
saidwos OOOO!
o9 sy o X og o g'l ol 50 00
Yo .
ks LA L B U LE AL .
st
oz
3
og
e
oy
s¢
$3jdwos QOOI
og 'y o 'S o' %2 oz 9l o'l 0 00
1 [| 1}l | | | _
2
$
’
[
[
¢
saidwos og)
og (X3 oy g¢ os [oz sl ot 20 00

z

sadwos gy

2/1

Sk p

abupd wiopun’

!

/

rin

" c/‘

abupi jpusuodx3

L-23

exponential distribution. Where a pure exponential distribution
admits samples which can be arbitrarily close to zero or
arbitrarily large, Myhill's method limits samples to within an
explicit minimum (larger than zero) and a finite maximum. These
limits depend upon two arguments supplied by the user, the
average duration and a ratio relating the maximum and minimum
samples. For example, suppose we wish to generate a sequence of
random durations. If we indicate an average duration of 2.0
sixteenths and maximum duration 4.0 times as large as the
hinimum, then the actual durations produced by Myhill's method
will range from 0.92 sixteenths to 3.70 sixteenths
(3.70/0.92=4.0).

The real-valued library function RANX implements Myhill's

procedures. RANX requires two arguments:

/

1. AVG - average value. AVG must be a real number whose

value 1s positive.

2. PROPOR - maximum sample divided by minimum sample.
PROPOR must be a real number whose value is 1.0 or

greater.

-- Programming example 4-11: function RANX --

pua S
udniaad i7d
(d)Bote/(0"1+()dNVE:(0 1L -d))BoTe = JuvM £
» "dHVYM 03 juswnBae peg, doas (Q°L°*37°'Y) 4T 2
(4)dHYM uoTaouNy L <l-p 3
pua St
udnasd vl
34T pua £l
(()2NvH)BoTE % 9AY- = XNVH 21
mw.mm Ll
(4)Bote % 9Av- = XNvY ol
LH + ()ANVH%(LH-2d) = Y 6
HOdOHd %% 24 = LY 8
((0°1-4H040Hd) /0" L =) =% HOJ4OHd = 24 VA
uaya (0°000L 371 HOJdOHd) 4T asTs 9
9AY = XNvd =
uaya (1L0°L°"3T7°HOdOHd) 4T 3sT8 v
..XZ<I [a)al u.CmE_Jm(_m Umm. D_Ou.m [
uaya (0 1°3T7°HOJdOHd °"<0° Q0 2T 9AVY) 4T 2 L«
(HOJOHd ‘ 9AV) XNYH UoT3ouny L e

h-24

The mathematics behind lines 8 and 9 of function RANX are
beyond the scope of this book. However, the quantity (R2-R1) is
significant because it measures how closely the output of RANX
approximates a pure exponential distribution. Figure 4-15
illustrates how this quantity varies with PROPOR. Notice that
Figure 4-15 indicates ratios logarithmically, that is, each mark
indicates a doubling of ratios (note 4). Ratios less than 2.0
proguce less than 25% approximations; when used to control Huﬁhwdt
' 3222%§9§£, results are 'drunkenly'cggggggéz. Ratios ranging from
1.0 to 16.0 produce approximations ranging from 50% to 75%;
results are quite syncopated but still noticeably less irregular
than true exponential rhythms. Ratios above 128.0 produce

approximations above 95%; results are indistinguishable from

exponential results.

Figure 4-15: Approximation of RANX to a pure

exponential distribution.

The exponential distribution relates to the Poisson
distribution as follows: Consider a segquence of random
durations, each distributed exponentially with an average length
of a seconds. A sequence of lightbulbs is an appropriate
example. It may be shown using some rather complicated

mathematics (see, for instance, Karlin and Taylor, 1975, pages 22

4 W

©.7%

APPROXIMATION

Y0 PURE
E£xPONENTIAL 080
DISTRIBUTION
0.28
000
2 4 1 32 e4 128
RATIO OF MAXIMUM TO MINIMUM VALUES
i —
N
D)
> " v e P g [

h-25

to 26) that the number of new durations beginning in a period t
seconds long follows a Poisson distribution with mean t/a.
Specifically, this mean is 1/a when +t=1. The reason why the
Poisson parameter is the inverse of the exponential parameter
should be clear: if a typical duration lasts 1/5 of a second, we

could then reasonably expect 5 such durations to fill the unit.

f.2.3.2 A 'Warped' Distribution - Another useful distribution
increases proportionally iﬁ density as values move along the

continuous range from O to 1. Equation 4-7 gives its density
function; the "warping factor" r has the effect of making the

distribution r times as dense at 1 as it is at O:

X
f(x) = 1 log (r) r (Equation 4-7)
r - 1 e

Equation 4-8 provides the means for transforming a uniform
distribution into a ‘'warped' distribution. Y represents a warped
sample corresponding to the uniform sample X, given a warping

factor r:

L-26

Y = log ((r-1)*Xx+1) (Equation 4-8)
r

Figure 4-16 illustrates how Equation 4-8 transforms uniform

samples into 'warped' ones.

Figure 4-16: Generating proptionally distributed

samples.

The real-valued library function WARP returns samples
- 'warped' by the factor R. R must be a real number whose value
bexceeds unity. PFigure 4-17 presents histograms of samples

produced by WARP.
-- Programming example 4-12: function WARP --

Figure 4-17: Histograms of proportionally distributed
samples - Each bar tallies the number of samples
falling within a region of width 1/50 for a warping

factor r=8.0.

A useful musical application of this proportional
distribution is the following: suppose one has a process (random
or otherwise) which generates registers uniformly distributed
over the range of the piano. The perceptual result might be that

the lowest registers will sound muddy, while the highest will

r=1.125
o~
T
2
g~
T
@
e,_
g-
VELPELY L R Er
Uniform range
o) 1
r=8.0

[NN

Warped range
I

!

T

Uniform range

| ol T

r=2.0

> =

o -

[

§ -

s

o

[

S

T —
RERERRE RN RREE RN

Uniform range
[¢]
r=320

® —

o

2

e

b d

Qo

a

5]

z
Plrryren bl

Uniform range

o . 1

—dh
-

e oy

10 samples
1

‘0.0 0. 0.2 0.3 (.23 0.6 06 0.7 0.8 [+5:] 1.0

100 samples
]

]
N 4
3
2
i 1 IR BT |
00 o.l 0.2 0.3 0.4 : 05 0.6 07 2] 09 1.0
000 somples
80
40 "
30
20
[] 3 i
mimnminmniil
0.0 o1 0.2 0.3 0.4 0.5 0.6 07 08 08 Lo
. 10000 samples
- 400
. 300
200
HTHIIT

00 ol o2 0.3 04 [X.] 08 or oe 08 1.0

N - ' oo, ,.,,N,.,,,‘.,,W._j

4-27

sound sparse. By selecting a suitable value of r, however, one
could apply Equation 4-8 to transform these registers in order to

obtain a more satisfactory balance.

4.2.3.3 The Gaussian Distribution - This distribution was
actually discovered by Abraham De Moive (1667-1754), though Carl
Friedrich Gauss (1777-1855) did study it extensively. It is the
(ZClassic "bell curve" of statistics, and 1s also called the
normal distribution. Gaussian distributions are characteristic
of scatterings of projectiles aimed at a target. The range
stretches from negative infinity to positive infinity, and
Equation 4-9 gives the density at any value x. The mean, u,
gives the central point around which the distributed samples

cluster. The deviation, d, gives the magnitude of scatter.

2
-[(x-u)/4]
f(x) = 1 e (Equation 4-9)
d¥sqrt (2%pL)

Graphs of this density function for various values of d appear
in Figure 4-18. While the range is theoretically unbounded,

samples far from u become extremely improbable.

4-Tq

2 0'3 L] o1 - S0 00 80~ - &= 02~ ik -
--———— p ————-- w
- ool
002 »
oog !
-4
00y
sajldwos QOO0!
$2 o2 &1 (Al £°0 o0 $'0- 0'1- €l 02— S°2~
L1 LA el el -
$ ol
oz
o 2 i
-
1
o <
{
og
saidwos QO0I O
o
$2 02 [l o't $0 Q0 80~ o't~ G- 02~ §2-
| I | | 111 1 R I i
2 -
€ -
4
9 3
. r
L
.]
sa|dwos QOI
&2 02 &'t 01 $0 00 90~ o'~ £'1= 0'2- §'2-
'
2
3

sajdwos Q|

L-28

Figure 4-18: Gaussian densities.

The Gausslan distribution relates to binomial distribution
in the same way that the exponential distribution relates to the
geometric distribution. Specifically, if we take n Bernoulli
trials with probability of success p=1/2 and choose n large
enough that the distinction bet@een k out of n and k+1 out of n
successful trials is negligible, then the distribution of k will
approximate a Gdussian distribution with mean n/2 and deviation
(1/2)*sqrt(n). The greater number of trials, the better the
approximation, though as few as 5 (!) trials provides a good
approximation.

There are several ways to produce Gaussian numbers. The
simplest to program is the "polar" method devised by Box, Muller,

(Kawth, 864, Prye G3),

e o T o e o,

and Marsaglla

The polar method produces two

independent samples with each invocation. The real-valued
library function GAUSS produces normally distributed numbers with
mean AVG and deviation DEV. It invokes the polar method on every
other call. Figure 4-19 presents histograms of samples produced

by GAUSS.

-- Programming example 4-13: function GAUSS --

pua

uJdnayad
4T pus

"snu3c = gyd

OAY + S % A % A3OQ = SSNV9
asia

‘asTe4’ = 9yid

9AY + S % X % A3D = SSNV9
(s/(s)Botexp-2-)adbs = g
seadadg
3ITXa (0°L°37°S) JIT
AxA + X%X = 8
L - ()3NVH x 02 = A
L= ()3INVYH % 02 = X
op
uaya (9vid) 3T
/ enJa3*/ gyTid4 eaep
avid4 1eotbot
(A30'9AV)SSNYY voTaouny

CTNOSNONOO
T T T TS T T

STUNMOTNONOOO
-

L-29

Figure 4-19: Histograms of samples generated by GAUSS
- Each bar tallies the number of samples falling within
a region of width 1/10 for a mean u=0.0 and a deviation

d=1.0.

§—-—4.2.§.4 Stored Continuous Distributions - Consider an
'érbitrary random incident over a continuous range whose density
at each value x is given by f(x). What does T(x) mean? It
does not give the probability that x will occur. Instead,
f(x) gives us the probability that the random incident will
produce an outcome near x. Looking more precisely at this
interpretation, suppose x1 and x2 are two closely spaced
values. The value midway between x1 and x2 will then be
(x1+x2)/2. Equation L4-10 estimates the probability p(x1,x2)
that the random outcome will lie in the region between x1 and

x2.
p(xl,XZ) = fl(x1+x2)/2] * (x2-x1) (Equation 4-10)

Equivalently stated, we can approximate p(x1,x2) by multiplying

the density at the midpoint of the region by the region's width.

4-30

The accuracy of Equation 4-10 increases as the gap between x1
and X2 narrows.

This insight enables us to generate random numbers
conforming to any continuous distribution, provided we know its
density function. The process involves 1) dividing the range
into small regions, 2) applying Equation 4-10 to determine a
weight for each region, 3) using the methods for generating
_.discrete random samples from stored distributions to select a
region, and 4) selecting a sample uniformly from this region.

The library subroutine CURVE returns continuous random
samples over a range divided into NUM regions. Similar in form
to subroutine SELECT (Heading 4.4.1.5), it requres five

arguments:

1. RESULT - CURVE selects a real sample between VALUE(O)
and VALUE?%gqand returns the result in this location
(line 16). RESULT must be real.

u&er—suﬁﬁfc&

2. VALUE - ssAaetod values along the range. VALUE must be
a real array whose indices run from O to NUM. VALUE(O)
must be low enough so that the densities at all smaller
values are negligible. Similarly, VALUE(NUM) must be

high enough so that the densities at all higher values

are negligible. Intermediate values will usually be

pua gl

udnasd Sl

M/H:=(A=-(I)3NTIVA) + A = LINS3H vl

(L=I)3NIVA = A £l

ANIVA Aeade jo saTd3ua mcﬂncoummLLOU uaamiag azeroduasazur 9 2L

, « "3AHND <04 sayBram peg, do3s (WAN'3B°1) 4T L

aeadad ol

M - d =4 6

3TX8 (M"3T7°H) 4T 1]

(IJLH9I3M = M Z

(WAN‘L=I) op 9

Jaqunu sty yatm ButuBStie uorbsa peayBrtam ajesoT 9 g

(JINVH x WNS = H 4

Jdadqunug wopued Um.mmnum ajedausg 8] £
(L)LHOI3M® (1 :0)3NTYA UOTSUBWTIP R VS
(WAN‘WNS* LH9IIM 3NIVA S LTINS3H) IAHND SuTanodgns 2 SRS

4-31

spaced evenly between VALUE(O) and VALUE(NUM).

3. WEIGHT - Array element WEIGHT(i) holds the probability
of an sample falling between VALUE(i-1) and VALUE(1), as
established by Equation 4-10. WEIGHT must be a real

array of dimension NUM.

4, SUM - total of all NUM weights in array WEIGHT.

5. NUM - number of regions in the continuous range.

-- Programming example 4-14: subroutine CURVE --

4.3 RANDOM MUSICAL COMPOSITION

Randomness probably occurs much more frequently in creative
decision-making than most composers and aestheticians would care
to admit. However, the first documented method of composition
relying explicitly on random decisions is the "Musical Dice Game"
attributed to Mozart (a page appears in Cowell, 1952). This

method enables its users "to compose, without the least knowledge

4-32

of music, country dances, by throwing a certain number with two
dice."

Random composition became fashionable in art music during
the 1950's with John Cage. Cage threw the I Ching to decide

which sounds should follow which in his Music of Changes for

piano (1952; described in Cage, 1952, also Cowell, 1952). Cage
saw an aesthetic appeal in music which truly eliminated the

biases inherent in systematic procedures or in personal whims

(note 5).

4.3.1 Lejaren Hiller and Leonard Isaacson: Illiac Suite

In order to compose the Illiac Suite for string quartet

(1957), Lejaren Hiller and Leonard Isaacson programmed the Illiac
computervmake' random choices and then'test these choices
according to stylistic rules. Whenever a choice failed to meet
all rules, it was discarded and a new choice was initiated (note

Hilleo and Taaacsew

“Beyr justified the idea of 'filtering' random choices
through rules by describing composition as "the extraction of
order from chaos". An excellent overview of the four

"experiments" which make up this workﬂ is available in Hiller and

Isaacson's own summary, reproduced here as Table 4-3.

lliac Suite Experiments Summarized

Experiment One: Monody, two-part, and four-part writing

A limited selection of first-species counterpoint rules used for controlling the musical
output .

(a) Monody: cantus firmi 3 to 12 notes in length

(b) Two-part cantus firmus settings 3 to 12 notes in length

(c) Four-part cantus firmus settings 3 to 12 notes in length

Experiment Two: Four-part first:species counterpoint \

Counterpoint rules were added successively to random white-note music as follows:

(a) Random white-note music

(b) Skip-stepwise rule; no more than one successive repeat

(¢) Opening C chord; cantus firmus begins and ends on C; cadence on C; B-F

, tritone only in VII; chord; tritone resolves to C-F

(d) Octave-range rule
6
4
(f) Dissonant melodic intervals (seconds. sevenths, tritones) forbidden
(g) No parallel unisons, octaves, fifths

(¢) Consonant harmonies only cxcept for » chords

(h) No parallel fourths, no 2 chords, no repeat of climax in highest voice

Experiment Three: Experimental music

Rhythm, dynamics, playing instructions, and simple chromatic writing

{(a) Basic rhythm, dynamics, and playing-instructions code

(b) Random chromatic music

(c) Random chromatic music combined with modified rhythm, dynamics, and
playing-instructions code i ’

(d) Chromatic music controlied by an octave-range rule, a tritone-resolution rule,
and a skip-stepwise rule

(e) Controlled chromatic music combined with modified rhythm, dynamics, and
playing-instructions code

(f) Interval rows, tone rows, and restricted tone rows

Experiment Four: Markoff chain music

(a) Variation of zeroth-order harmonic probability function from complete tonal
restriction to “average” distribution

(b) Variation of zeroth-order harmonic probability function from random to
“average™ distribution

(c¢) Zeroth-order harmonic and proximity probability functions and functions com-
bined additively

(d) -First-order harmonic and proximity probability functions and functions com-
bined additively

(e) Zeroth-order harmonic and proximity functions on strong and weak beats,
respectively, and vice-versa

(f) First-order harmonic and proximity functions on strong and weak beats, re-
spectively, and vice-versa v

(g) ith-order harmonic function on strong beats, first-order proximity function on
weak beats; extended cadence; simple closed form

Aadle 4-3

4 - %L &

-3

1

.

r s
010 -
Lo it

trx
1t

y o~
t
1—
t

}

Pizx

" S

ha

f
£ be

sut fasto

[a)

—
&L
b
o

vl
r
1

cot lgg&o

be

dim.

n

=f

-

arco
¥
172

yys

} &

——

X
a

V-

-

B

r

¥
dim.

A #3
4

1)

¥
w:

DD | cresc.

CiEm e e M o

1693

74

L

dim.

o

X
r

oW s
L

rs

1
N
sSnapbizx

sul pont.

r 4
o)

T
e
&

t
bex
4

§ dim|.

g
Co

¥

T

e e e O ey

A —
2z

T

J Sm————

¥

ol

rn

e
AL é.{ i
"3
> o
7o
11y

17 P va

X
1% 32
L9
1155

= 7

;3
%
o

arcoff
o
1
~ arco f

Vo TI0 o8
13 ;3

S |

24

£z

Yo B

e 3

Tiasng

e e |

1

3

P

¥

s
)y

1)

-y

3

N
e ¢

sul hent|

1y

e

Pizz. b_'é

17

s
t

?’\ " 4 "‘7,0

phe |
7]

1y

R

T
TR L]

'
cy ¢

1

Cresc.
{y;
j cresc.

-

2t

192

e

mp *

1
1

[ey

>

B

B
\

-V

maxtellato

BH-

V&7

1

3
3

s_m cxese,

(D) TewmPo |
o)

<

M WHOLE — TONE SHAKE

4-33

Table 4-3: Illiac Suite Experiments Summarized -

Reproduced from Lejaren Hiller and Leonard Isaacson,

Experimental Music (New York: McGraw-Hill, 1959),

page 83. Copyright 1959 McGraw-Hill.

Figure 4-20: Lejaren Hiller and Leonard Isaacson,

Tlliac Suite (New York: New Music Edition, 1957),

Experiment 3, measures 1-54 - Copyright 1957 New Music

Edition.

4.3.2 TIannis Xenaklis's Stochastic Music Program

Iannis Xenakis has preferred the term "stochastic" to
"random" ("stochos" is Greek for "chance"). Xenakis introduced
continuous statistical distributions for the first time into
musical composition with the Gaussian "temperatures" of massed

glissandi in Pithoprakta (1956; described 1971, p. 12) and

later employed Polisson densities to arrange aggregates of sound

in Achorripsis for 21 instruments (1957; described 1971, p.

22). For Achorripsis, Xenakis divided his score into a grid

and used Poisson's formula (Equation 4-U4) to construct tables

detailing how many "events" could occur in each square of the

=34

grid. The statistical properties of the work match what would
have resulted had the placement and content of each event been
determined by random processes, yet Xenakis arranged his material
entirely by hand.

The aggregate effect of these statistical scores concerned
Xénakis more than specific relationships between elements, and in
his 1962 ST program he began consigning specific decisions to the
random number generator of a computer. The following synopsis of
the this landmark program draws both from Xenakis's own
description of the program (1971) and John Myhill's excellent
critique (1978). The design of the ST program centers around two
nested loops, an "outer" loop for sections and an "inner" loop
for notes. Prior to initiating these loops, the ST program
accepts directives from the composer (note 7) detailing the

following information:
1. Length of composition.

2. Minimum and maximum "objective" densities of notes per
second in any section - From this information the ST
program derives a logarithmic scale of "subjective"
densities which we present here in a simplified --
though equivalent -- formulation: given any

"subjective" density X in the range from zero to one,

4-35

the ST program converts this "subjective" value into an

“objective" density Y using the transformation:

X
Y = A * (B/A)

Where A and B are the minimum and maximum “"objective"
densities, respectively. Notice that X=0 returns Y=A

while ¥=1 returns Y=B.

Average length of sections.

Definition of the orchestra - The composer organizes his
ensemble into a collection of "timbre classes", each
consisting of one or more instruments. One and the same
instrument used to produce different types of sounds
(such as sustained notes, tremelos, or glissandi) must

be included under multiple "timbre classes". Once this

 scheme of organization has been established, subsidiary

information must also be provided:

a. For a given number of points equally spaced from
zero to one along the scale of "subjective"
densities (item 2 above), the composer must indicate

the relative percentages of "timbre classes" which

=36

the ST program is to employ at these given

densities.

For each instrument in each timbre class, the
composer must indicate a relative percentage of
notes in the timbre class which should employ the
specified instrument. He must also indicate lowest
and highest pitches for the instrument (not
necessarily corresponding to the instrument's full

range) along with a maximum duration.

With each iteration of the "outer" composing loop, the ST program

first determines attributes of a section and then initiates

iterations of the "inner" composing loop in order to fill out

this section with notes. The "outer" loop selects three

attributes for sections:

Durations of sections follow an exponential distribution

around the average sectional duration supplied by the

composer (item 1 of the previous list).

Densities of sections follow a uniform distribution

along the "subjective" scale of densities from 0 to 1

(item 2 of the previous list). However, "a certain

4-37

concern for continuity" leads Xenakis to inhibit more
drastic contrasts using a strategy which John Myhill
explains in the following way. Suppose the "subjective"
density of the most recent section was X'. Then in
order to select a "subjective" density X for the current
section, the ST program fifst initiates a Bernoullil
trial with probability 1/2 of success (that is, it flips
a coin) to determine whether X will be smaller or larger
than X'. If X will be smaller than X', the program
selects two random values xl and x2 uniformly between O

and X', then sets:
X = X' - |x1-x2].

Otherwise if X will be larger than X', the program
selects two random values x1 and x2 uniformly between X'

and 1, then sets:
X = X'+ [x1-x2i].

According to Myhill, the average distance between X and
X' using this strategy is 1/6. By contrast, the average
distance between two independent random samples

distributed uniformly between 0 and 1 is 1/3 (note 8).

4-38

- The "sﬁbjective" density is then converted into an

"objective" value using the formula described above.

Once it has determined a "subjective" density, the ST
program then uses this value to determine what
proporations of "timbre classes" should occur at this
density. It does this by consulting the percentages
supplied by the composer for the two nearest points
along the density scale (item 4a of the previous list)
and then interpolating (Chapter 8) between these
percenfages to create a table of welghts effective

throughout the current section.

When theée sectional attributes have been established, the ST

program begins composing notes. Each note is described by six

attributes:

1.

The starting time ofla note is calculated relative to
periods between consecutive attacks. Periods are
distributed exponentially around a mean value which is
the reciprocal of the "objective” density established
for the current section (item 2 of the second list

above) .

k-39

The instrument upon which a note is played 1s determined
by firstkrandomly selecting a "timbre class" using the
table of weights established for a section (item 2 of
the second list above) and next randomly selecting an
instrument within this "timbre class” using the
secondary table provided by the composer for each

"timbre class" (item 4b of the first list above).

To determine the piltch of a note, the ST program employs
a strategy similar to the one used to select "subjective
density". In this instance, the program consults the
most recent pitch played by the given instrument,
decldes whether to move upward or downward from this
pitch, and then uses the lowest and highest pitches
indicated for the instrument by the composer (item 4b of

the first list above) to determine how far to move.

If the "timbre class" admits glissandi, then the ST
program selects a glissando speed by a Gaussian
distribution. The mean of this distribution is always
zero (that is, there will on the average be just as many
downward-moving glissandi as upward-moving ones); the
deviation may increase with density, decrease with

density, or vary independently of density, but in any

Lh-4o

case the deviation holds constant throughout a section.

Durations also follow Gaussian distributions. Given the
density of notes per second for the current section
(item 2 in the second list above) and the relative
likelihoods of each instrument in each "timbre class" at
this current density (obtained from the tables provided
in items 4a and 4b of the first list above), the ST
program performs some rather elaborate calcuations in
order to determine two quantities: 1) the average

distance Z between attacks by the current instrument

in the current section and 2) the distance Zmax between
attacks the same instument in this instrument's

slowest section. The progranm reconcilés these two
quantities with the longest duration G playable on the
instrument (item 4b of the first list above) using the

formula:

Z' = G * 1n(Z)

[V R W o O
In(Zmax)

Notice that the formula returns Z'=0 when Z=1, returns
7Z'=G when Z=Zmax, and acts to foreshorten Z' for

intermediate values of Z. For the formula to be

-l

meaningful, it 1s necessary to express Z and Zmax
relative to the shortest possible note duration. The
absolute minimum note length allowed by the ST program
is 1/10 of a second (quintuplet eighths at J =60), which
' Would require scaling both Z and Zmax by a factor as
large as 10 (note 9). The ST program generates a random
duration using a Gaussian distribution with mean 2'/2
and deviation Z'*sqrt(2)/4; durations are limited on
the lower end by the shortest note duration and on the

higher end by Z°'.

A final attribute selected for each note is an
"intensity form". Xenakls admits five basic forms in
all variants employing the dynamics ppp, p, £, and ff:
a. Steady dynamics (e.g., steadily ppp),

b. Crescendi (e.g., ppp-cresc-f, p-cresc-ff),

c¢. Diminuendi (e.g., ff-dimin-f, ff-dimin-ppp),

d. Swells (e.g., pp-cresc-f-dimin-pp,

p-cresc-ff-dimin-p), and

441 4

d\.nm..uam\,w 91 oF g
ol

GR

I SN

oo

<D ”..va “CA
Q\S%QN »? tauy 3
.. 2eq | 1
owesd ﬁﬁ:ﬁ& SMMN 7 :
aen N‘n_ n.u.mo.on yqxeorw o 3 w. 1
IS o ooy oy h !
sighlop =5 tols! y@FO™ Gebpmomamy g Lo
s .) OtQulr—.be a3 d] . .N~ w —/ :
8 =0 dslo S yQre oword | o AN
£ =3LA tolog = ¢A Wwoy) ., A
¢l
235/s 9z e |
Sosfs S ovedd m
uun\m 13 A:u \ _.
205/5 4 LY/
IRCcTA N Ear SR
B B Y O S
Wy Ay FHIAF viQ\\rw

Ay

T~
@

}

LE e
.-

H

k

28

()

138

asp
A{m}

—

inilsers I

b a0 M S

i

i4

P
i

an

fel

S .

1%

———
r3

CAFT

ash
¥

[—

5.3)

S, ot

AN

.\f = 5 0

Ped. .
N—iay = L

AR

B

2 ¢

v

é,, R

K ———id
T —

Ty

Da\ % Ll ;

.8‘-.-
l&.
£

*

Liry

T~

4

2B e ¢

au(:L
&

A

#‘E“

102

'y

ooy

A
136

) 'f ¥

Y

1

\

]

]

]

)

1
1 M i
3 B M -

=y : « MY (O & o

z : = i |

o & A ~ * X || 1% _

| % *
_ ~r _
] ¥
o4 1 ! |
X -
tl ! _ |
q I “ !
B _]] -
lZH . ¢ .
-, | \) -
i | BN ; ool
™~ Mv o[- Qi 3 ' al) _6 .)
N <5 =

G h “ i g g “ <
i | \.WI. ”) ,.“J
Vo 1 1 / .

3 ! "5 : ! -

a _ 3) : I :
4 _ ¥ ' ! -
3 | [~ . \

o | . ' i

_ S . | 0ije
nW “w of) g, s O oy | m 23 E * ; L
- H, - | M n—w i ¢
|] 3 . .
f “ ,..Wma::. . “ ' i
: . ' L
--“. " b /‘M*lll 7[3 N p
o4 | - ol ﬂ 1 1 H
[3
I
< 3
| ,I 1 '
y (L RS & APJ .. [‘) ; :
11 @ + TN E e = Ol ' :
<L e 8 = L v =TT U a K
s i .uw,. bw,. e __f o anm 45 Ly = Anu.mw» a3 |
> Y 3 o4 ..W Sw ——— -

LI

42

e. Inverted swells (e.g., ff-dimin-f-cresc-ff,
ff-dimin-ppp-cresc-ff).
The total number of variants is 44. The ST program

chooses uniformly from among these variants.

Upon completing the ST program in 1962, Xenakis used it to

compose several works for varied ensembles including

ST/10-1,080262 for 10 instruments, ST/48-1,240162 for large

“orchestra (48 instruments), and Morisma-Amorisma

(ST/4-1,030762) for violin, 'cello, contrabass, and piano. A
relatively active excerpt from this last composition is

reproduced here as Figure L4-21.

Lu.l'\)‘& WAL)(

"y v—u(
. 5 7--’ *UE F\vx‘\
Figure 4-21: Tannis Xenakls, Morsima-Amorsima L“Aggw MBS ENe ¢

/ V(L\D\’)»Ey‘(’*’l(\,is) o~ wechian, L%’M\j%
(1962), measures 115-123. " The inddeations In the Gul.{ic. \ed dvus»heg

. %’o@—\&&m& o 5
string parts are: asp - arco sul pont.; an - arco O %1 %k;esﬁve

posit. norm.; fcl - frappe col legno. Copyright P“ﬁVuWM

1967 Boosey and Hawkes.

4.3.3 James Tenney: Stochastic String Quartet

James.Tenney was programming the computers at Bell Telephone

/4 - 421&,

James Tenney

STOCHASTIC STRING QUARTET

1/20/63

J =60

3
be
g

5.4
{
T
1
o
7L 4

o

—

e,

4

1
4

R

ey
K
1
q'd-\ o

m

/d

lq‘-‘

ok ; A m..{uw- ;{N
i)
~ R
e T TR
TN
e i
o pelil Y Wa .y
\xlnlu >
G
P L s | A
e o o ~u
° nﬂmwu mpf
=3
N
S o
-

1

4
r—3— h

v@j 1

Hal H

H bt

T 3

T

33—
5
o

3 ™
u = — N %m.a
A %-J |
L HHIL | e
T wradilY:s ™
\ X ! \ {iv
Al 11 A ﬁ -
| e
I N m
Flll ! = =<3
il ! < TR
E.&un?u A ! F “-/ ”q <
NI
l 8, T Hlnuﬂ X
uﬁ H“Hn< HIMWM:‘-{. m
AR
I m .. RIS ._W
al |
y AL R & e
o NEp y o
- - £ N
g £

.__q....

be

—— 2,
I\

—+ A T

47 Ly
g

2] P

3.0k

N = 5
i
0 L
a1
B

32
a—

8.4
1

[
X
L LCN—

o il A
t Eal ﬁ b i
il
1.8 Ii: s
o 4 =
il L
E bai \.._Wuhul i W
/
alo I
ﬁ 1 = [N o
2o m“n L% X
s R e
oLl Ly ol uuru..
ﬁlluulll .m — ...n”Lu |t
1111 [
[Sy M

by Slnl.‘ 1 .—o
kuub f
o L TR
W [
sl 1H_ ﬁ oI
s | L
NP NER AN
=~ —— ===
G B s >
B =
-

. h:“g

e et ¥

——

s
-<

Y

1A

1
1
3

1
T
i

e 2~g 0w 1

1
kot L5

!
e

i

5 i b

-
=

=

~)

| P)
. J
—t
312 e
ir }
— .

b

2
&
£

“‘ﬁi b
Lo

b
jud
L
h
1]

—t

by

T
L/-s———‘

imf) dim—-5=-2"_"__1

i,
4
=

P

L
Al ——— .

e
imf) dim. - = == == - —~]

mp
np

4

(mf)atm, ~ == e e e~ -

5

b-43

Laboratories to create statistical compositions roughly at the
same time as Xenakis was Writing his ST program (Tenney, 1969).
Though unaware of Xenakis's program, Tenney was well aware of
‘Xenakis's manually composed scores such as Pithoprakta and

‘0

Achorripsis. Tenney's programs differ from ST/ Ehat Tenney

usually retains direct control over the large-scale "direction"
of a piece. Where the ST program holds such musical attributes
ags densities and proportiong of "timbre classes" fixed over each
section, Tenney also often allows one or more muslcal attributes
tb'evolve gradually. (Such gradual evolutions will be discussed
in greater detail in chapter 8). Where the ST progran implements
only three levels of musical structure -- composition, section,

and note -- Tenney implements several intervening levels.

Figure 4-22: James Tenney: Stochastic String

Quartet, measures 1-15 - Copyright 1963 James Tenney.

Most of Tenney's composing programs generated files of

wene. , -
numeric data which &8 then realized dimesedtyt by digital
which c‘u(mt\‘}'s }’\‘VEC\ QMMA'M{’\'CM of 4he scove
synthesis. One exceptionfis a short piece called the Stochastic

String Quartet (1963). This piece divides into three sections,

which at the indicated tempi last 52, 102, and 37 seconds.
Intervening between the section and its component notes is an

intermediate structural unit which Tenney calls a "clang", while

h-ll

the long-term "direction" is determined by parametric graphs
detailing how various musical attributes evolve over time. The
attributes under Tenney's control include "clang durations",
average periods between attacks, ranges of pitches, dynamics, and
several aspects of timbre: vibrato, tremelo, "spectrum" (sul
tasto, ord., sul pont.), and "envelope" (pizz., arco-staccato,
arco-legato, arco-marcato, arco-sforzando). Each graph supplies
a mean value to one or more random automata in order to select
attributes for a specific "clang"; 1in turn, the program feeds
these "clang" attributes into further random automata in order to
select attributes for a note.

An especially significant feature of the Quartet 1is
Tenney's elaborate procedure for composing rhythms. Not content
to approximate his rhythms as displacements relative to a simple
meter such as 4/4 (what has become the usual approach) Tenney
exploits bracketed rhythmic proportions directly as a
compositional resource. His program employs a scheme of triply

nested loops:

Main loop: For each "clang", the program chooses several
attributes including a "clang duration" consisting of
approximately two to five quarter notes and a mean period

between attacks.

b5

First nested loop: For each instrumental part (violin I,

violin II, viola, 'cello), the program chooses a range of
pitches, and a number of "gruppetto" units. This second
number need not match number of quarters in the "clang";
for example, if the "clang" lasts for 3 quarters and the
number of "gruppetto" units is 5, then the result will be a

bracketed rhythm in the proportion of 5:3.

Second nested loop: TFor each "gruppetto”" unit in the

current part, the program selects a number of rhythmic

divisions.

Third nested loop: At the innermost level, the programn

steps through the divisions of each "gruppetto" unit. With
each step it compares the period of whatever musical event
(single note or double stop) is being played by the current
instrument to the minimum period established for the entire
"clang". If the event's period is still to short, the
program increments it; otherwise, the program initiates a

new event.

The likelihood of an event being a double stopvversus a single
note is controlled by a graph which ranges between complete

certainty of a single note and complete certainty of a double

h-he

stop. Tenney employs Hiller and Isaacson's procedure to subject
pitches to a non-repetition rule: pitches are selected at
random, but any pitch which has recently been used by the current

instrument is discarded in favor of a new random attempt.

4.,3.4 Herbert Brun: Non-Sequitur VI

Figure 4-23: Herbert Brun: Non-Sequitur VI (1966),

measures 1-8 - Copyright 1966 Herbert Brun.

Herbert Brun used random selection in Non-Sequitur VI.

(Description forthcoming.)

4.3.,5 Barry Truax's POD Program

Figure 4-2U4: Graphic depiction of input data to Barry

Truax's POD progran.

In its original (1973) version, Barry Truax's POD program

implements procedures similar to those used manually by Xenakis

T -4 (

B

=y H= ff—d<ff

~

o [

! A
e 3 uma e f 1 PquiLIDY
~ 1 - T - o

=G| 1 vownod

11 UoISSNDIa —mrment
| Shnaiiatiite il v ‘

P4l m “ X > o] T 1awuosy
— e — Zotdogt ! e
N - r i r XY 7 - | uexoe

qv4oi443

= » L4 ~— S ——— W [4 [d T3 -
gy=d § 4 A
et mﬂ.._“ ._.A_nm : rww. 1 oquiiop
un \ / K.W W .-
b = S == T : M® 1uannd m
p i r S —_ ’ - > T d w..
z 2= g | g b ,
: Credpelin? e = s —— %
& = et o o o o 7 om ; |
m. .,‘r . m m “ﬁ _u m .ﬁAr m -y ”47_ DJ . lr _m m m WJ “r m m W Bm é_w &.o‘om.om 04D00IS Enr”.m _
iapi Bl grka bty 4 I k ﬁ. AL hgk, |k H e i T TN R .-..-le owoig
o bt 4 EL' # 1T .mﬂ YY m JHW .m ,“ & mj W w] 2 . [N
3 # 3 3 EE ERRRC E EE R EREE T EEE R = :
443 nwwf oh o bofja N =t nopud # fohe , % E] rv% 4 gwn& kv * P "...Mrw a.m . W baioqe I
ot e F =T g B T Y, ™ |

1
23
Y
e

: = \ = = :
(- Q.H_,l — 4L ? unﬁl... .N.a A L}j { Pdgn!.. k LL». 1 »m ip wwn_.u Hﬂ ~_. In = 4 23J0H
Rt

(a8l
"

ol
ot

oL

L
Y

|

A

1 oy 1
MNE & T - 0180
1 ALY 1
| € —
oo V" g2¢
—
S S e \F 1 (®
= T T ¢ 1 ¥ = T XS L i i <5
) .l L1 1 Lo d W | { 11 b4 ' ? —, b |)\‘ﬂ— o L S, L1 Ls) Lo 2 = . L= | Ll] bvv." “l _h’ Ms@ mﬁm—u
I 1 ol ” S, ¥ b T 1 hY Y i w_) N Ay w8 s N N 4 1 ™ i T LA 4
<& = = 4 % AR P _ _ o 50
—_— W ' 5 c— . 2
» £ . Z_#h
N ——

4-9bb

Kouanbaiy

Time

KyisusQ

Time

102[q0

Time

F\f) 4-2%

bl

to compose Achorripsis. "POD" in fact stands for "POisson

Distribution". The user of POD describes a musical composition
using three graphs controlling 1) densities of sonic events in
time, 2) lowest and highest frequencies, and 3) an "object"
number which usually determines the timbre of a sound. Figure
f-24 illustrates the form of the graphs of densities and
frequencies graphs, which are composed from elementary segments.
Each segment in the density graph is described by an initial
'*density, a Tinal density, and a duration; likewise, segments of
the frequency graph, which Truax calls the "frequency-time mask",
are described by initial and final ranges of frequencles along
with a duration. Segments of the density graph need not
necessarily coincide with segments of the frequency graph. Once
the three graphs have been completely described, POD implements

the following procedures:

1. POD divides the time-axis into l-second units and
interpolates (Chapter 8) along the density graph to

determine the number of events in each unit.

2. TFrom the frequency graph, POD constructs a
frequency-time "trapesoid" lasting one second. Upon
this trapesoid, POD superimposes a grid in which each

column lasts 0.01 seconds and in which the number of

Lh-u8

elements in a column is fixed so that each element
covers only a very small fraction of the total range of

frequencies. POD then employs Polisson's formula

(Equation 4-4) to distribute sonic events around the

grid.

3. For each sonic event, POD selects an "object number".
Truax's method of selecting objects adapts the TENDENCY
feature of Gottfried Michael Koenlg's PROJECTZ progran,

the mechanism of which is described in Chapter 8.

The results of these computations can be either performed in real
time or stored as score filegs. Though Truax's procedures have
strong antecedenté in earlier programs by Xenakis and Koenig, POD
providegs the flexibility of an interactive editor for creating
and modifying the three parametric graphs. Trux developed his
his original system for personal use, using it to produce several
compostions including Trigon (1975) and Nautilus (1976). 1In

his 1978 version of POD, Truax expands the system's generality by
allowlng users tp edit and merge score files in a "second level"
of proceséing. This verslion is responsible for compositions by
Truax such as Androgeny (1978) and Arras (1980); this |
version has gained some use by composers other than Truax

. The wowest .
himself. Z=wmew vers1on)e&%%€#?PODX)1ncorporates an even greater

I-lg

degree of sophistication, incorporating "contitional editing"
features along with routines for spatial placement. Included
among Truax's compositions produced using PODX are Wave Edge

(1983).

4.4 DEMONSTRATION 2: RANDOM SELECTION

Demonstration 2 illustrates the use of random
decislon-making to compose a piece of music. Like its
predecessor, Demonstration 2 has a three-tiered structure in
which phrases occupy an intermediate level between the piece as a
whole and the local details. From this point on, however, all
resemblance ceases. Where the compositional directives for
Demonstration 1 completely describe the musical results, direct
compositional control over Demonstration 2 is limited to
specifying a repertory (or range) of options for each musical

Seescu by
attribute involved and &aségﬁ‘:;ag a relative weight for each
option. All further decision-making at both intermediate and
local levels of structure is delegated to thé random-number

generator.

4 "'4 c?("

Attributes of Phrases

Phrase lengths

[I r——

i 20 . 25 31 38

Average durations - '

Articulations

Registers

E3-DR4 DHe—C5 B4-ARS Ab5-G6

Attributes of Notes

Durations
M
1
-
AVGDUR
Chromatic degrees
T ¥ (3 3 3 F G S Ab A B ®

' —ay r——‘-'“ -—»«—1 e ’r . Ny . e ,‘ : - [..1 . po— o

150

4.,4.1 Compositional Directives
Figure 4-25: Compositional Data for Demonstration 2.

We may regard each phrase of Demonstration 2 as a string of

}

consecutive rhythmic unitsl, where an individual unit can be
elither a note or a rest. Phrases are distingulished by four
randomly selected attributes: 1) length of phrase, 2) average
duration of notes (equivalently, average tempo),

3) articulation, and &) register; probability distributions
affecting how each of these is selected appear depicted in Figure
L-25,

Articulations express the probability that a rhythmic unit
within the current phrase will be a rest instead of a note. If
the unit is a rest, then its duration will center around an
average half as large as the average duration characterizing
notes. Two consecutive notes with no intervening rest are
slurred; two consective notes separated by a rest of null
duration are tongued.

For the purposes of Demonstration 2, "register" indicates a
gamut of twelve adjacent semitones which holds fixed though a
phrase. If a unit is a pitch, then the program first selects one

of the twelve chromatic degrees and next places this degree

within the appropriate register.

AVERASE s
DURATION

oo

[0

6,29
ARTICULATION orr . |]

[X1]

I

~ . REGISTER

m
ML-""TH

€3

measure | | [} l Is | i § | lio

2o |

AVERASE
DURATION

0.80

0.29
ARTICULATION ¢ 17

o.t0

RECISTER iy I ¥
- l%__ ===

measure i { I] {es |] }] 130 | 1 | 1 |38 | | I 3 [40 |}

AVERABE
DURATION

[C I

.30
020 H L

ARTICULATION l
.17

o.lo

RESGISTER

E3
meanure ! | | | las | 1 | i {0 |] i { {ss | 1 |]

SR - L NI “ A

o A-50y

4-5CYy

Demonstration 2

Charles AMES

Clarinet

80

STRICTLY J

Do

..

1

e o SR

I~ X2

e

T
I

o

Vet . 2 I et

~

-—E.f—-\

e
v

-

i ad

-

b M

:{_
-@

>-

-

b

-

AboAd

b

—

T

T

1

1

- =3

L X3

i

=

'S

o Hat”

==

i

y I
-

Y
1
¥

T
i
¥rd]

w— i
ra

Nt

x4 3
+

! N

4

WE

[

35

3

&E

-~

), 9 -
el

r+H

e

=

+

T

045 e

k3

05

(© Charies Ames 1984

nks

o

e I

boiaizanas |

4-51

In addition to depicting compositional data for phrases,
Figure 4-25 also depicts the exponential distribution used to
select durations for notes (rests‘are half as long) and the
uniform distribution used to select degrees. Attributes selected
for phrases are depicted graphically in Figure 4-26, while the

complete product is transcribed in Figure 4-27.
Figure 4-26: Profile of Demonstration 2.

Figure 4-27: Transcription of Demonstration 2.

&— U4 4,2 Implementation

-- Programming example 4-15: program DEM0O2 --

Following the model of Iannis Xenakis's ST program, program
DEMO2 reflects the three-tlered musical structure described above
as a design of nested loops. The bulk of DEMO2 proper (lines
2?—41) constitutes the "outer" composing loop; this loop

establishes the attributes for phrases depicted in Figure 4-26.

4-5c¢

4 program DEMO2
2 c
3 c Demonstration of random selection
4 c
5 parameter (MPHR=5,MAVG=4 ,MART=4,MREG=4)
B integer VALBEG({MREG),VALPHR{MPHRA)
7 real VALAVG({MAVG),VALART(MART)
8 real WGTPHR{MPHR) ,WGTART(MART)
=] data VALPHR/ 16, 20, 25, 31, 39/,
10 : WGTPHR/.625, .5, .4,.32,.26/,
11 H SUMPHR/2, 105/
12 data VALAVG/2.,3.,5.,8./
13 data VALART/.1,.17,.29,.5/
14 H WGTART/1.,2.,3.,2./
15 i : SUMART/8./
186 data VALREG/40.,49.,59.,88/
17 c .
18 c Initialize
19 c T
20 open (2,File='DEMO2.0AT' ,statuss "'NEW')
21 ITIME = O
22) MTIME = 8 % 6O
23 o] :
24 c Outer composing loop
25 Cc
26 do
e7 c Select duration of phrase
28 call SELECT(IPHR,VALPHR,WGTPHR,SUMPHR,MPHR)
29 KTIME = ITIME + IPHR
30 c Test for end of composition
31 if (KTIME.gt.MTIME)} exit
32 c Select average duration For notes in phrase
33 call ALEA(AVGDUR,VALAVG,MAVG)
34 c Select probability of rest
35 call SELECT(ARTIC,VALART,WGTART,SUMART,MART)
36 [Select register
37 call ALEA(IREG,VALREG,MREG)
38 o} Compose phrase
38 write (2,10) IPHA,AVGDUR,ARTIC,IREG
40 10 format ('Phrase duration:',I4,' Average duration:',F7.1,/,
41 : 'Articulation:',F7.3,' Lowest pitch:',13)
a2 call PHRASE(KTIME,ITIME,AVGOUR,ARTIC,IREG)
43 repeat
44 close (2)
45 stop
45 end
1 subroutine PHRASE(KTIME,ITIME,AVGDUR,ARTIC, IREG)
2 c
3 [Inner composing loop
4 c
S logical SUCCES
=1 data REMAIN/O./, IDEG/0/
7 do
8 c Select note or rest (no two consecutive rests)
=] if (IDEG.eq.0 .or. .not.SUCCES(ARTIC)) then
10 c Select duration of note
11 DUR = RANX(AVGDUR,1000.0) + REMAIN
12 IDUR = max0(1,ifix(DUR+0.5))
13 REMAIN = DUR - float(IDUR)
14 c Select degree
15 IDEG = IRND(12)
16 else
17 [Select duratiomn of rest
18 DUR = RANX(AVGDUR/2.0,1000.0) + REMAIN
19 IDUR = iFix(DUR)
20 REMAIN = DUR - float(IDUR)
21 c Null degree indicates rest
22 IDEG = O
23 end if
24 c . Write note or rest
25 call WNOTE{ITIME,IDUR,IDEG,IREG)
26 Cc Test for end of phrase
27 if (ITIME.ge.KTIME) exit
28 repeat
29 return
30 end
" -—
Ev 4-15

452

At the end of each iteration of the "outer" composing loop, DEMOZ
calls subroutine PHRASE. This call invokes an entire cycle of
iterations by an "inner" composing loop (lines 5-26 of PHRASE),
each of which iterations composes a note or rest.

The symbols of DENMO2 proper adhere to four mnemonic 'roots'

corresponding to attributes of phrases:

1. PHR - length of phrase.

2. AVG - average duration of notes (equivalently, average

tempo); the average duration of rests is half as large.

3. ART - articulation, expressed as the probability that a

rhythmic unit will serve as a rest.

4, REG - register, expressed as the lowest pitch in a

twelve-gsemitone ganmut.

The number of options available to each attribute is given by a
parameter starting with the letter M. The values reside in
arrays beginning with VAL, their associated welghts reside in
arrays beginning with WGT, and the sum of these weights is held
by a variable beginning with SUM.

The methods used to implement the different random decisions

h-53

vary with the distributions depicted in Figure 4-25. DEMO2 asks
the library subroutine ALEA to select avefage durations (line 34)
and registers (line 38) since these decisions provide equal
likelihoods for each option. PHRASE selects chromatic degrees
directly by asking the library function IRND to select a uniform
random integer between 1 and 12 (line 13). So long as no two
rests occur consecutively, PHRASE settles the question of whether
a rhythmic unit should serve as a note or as a rest by asking the
_library function SUCCES to conduct a Bernoulli trial (line 7).
DEMO2 asks the library subroutine SELECT to provide durations of
phrases and probabilities of rests according to stored
distributions (lines 29 and 36). Durations for individual notes
and rests follow exponential distributlons provided by the
library function RANX (lines 9 and 16 of PHRASE).

Remember that exponentially distributed samples occur over a
continuous range. The variable REMAIN (lines 9-18 of PHRASE)
enables PHRASE to reconcile exponentially distributed durations
with the discrete rhythmic neumes of musical notation. REMAIN
resembles an "accumulator": Each time PHRASE computes IDUR from
DUR, it stores the fractional part in REMAIN. (In line 11, the
lower bound of 1 precludes generation of notes without durations.
The increment of 0.5 causes PHRASE to approximate DUR as the next
larger integer when its fractional part ekceeds 1/2. In such

cases, the amount added to REMAIN is negative.) The next time it

h-5h

cbmputes DUR, PHRASE adds REMAIN to the new random value.
Fractional parts of consecutive random values accumulate until
their sum exceeds unity; when this happens an additional
sixteenth bleeds off into IDUR.

The tasks of subroutine WNOTE in DEMOZ2 differ from those of
its counterpart in DEMOl in that pitch information takes the form
of a chromatic degree (1 to 12) and a register. Registers are
expressed 1in semitones above CO and indicate the lower bound of
" the octave which is to hold the final plitch. The integer library
function IOCT performs the necessary conversion from registers to

octaves:

-- Programming example 4-16: function IOCT --

bL.5 NOTES

1. Mathematicians regard a function as a "rule of association";
while it is generally most economic to distill functions into

formulae, tables such as Table 4-2 suffice.

2. Where not explicitly indicated otherwise, the motivations for

the random distributions described under heading 4.2 are drawn

-5

pua

uJdniad

b + 21/(9301-938I) = 1001
(934I°9301)1001 uoT3ouny

- NMS

/RS 3

h-55

from George Roussas's A Pirst Course in Mathematical Statistics

(1973). Similarly, the algorithms for generating random samples
conforming to these various distributions are drawn from Chapter

3 of Donald Knuth's Seminumerical Algorithms (1969).

3. The exclamation points in Equation 4-2 indicate taking

factorials. The factorial of 0 1s 1; for an arbitrary integer

M, we define IM! as follows:
M! = 1 % 2% 3% [, % (M—l) L)
For examples, 1! =1, 2! =2, 3! =6, 4! = 24, and so on.

4, Myhill's 1979 article describes his method with reference to a
"degree of non-periodicity"” which is in fact equal to the natural
logarithm of the argument PROPOR described here. Function RANX
incorporates Myhill's own formula for deriving the values R1 and

R2 directly from PROPOR.

5. Pierre Boulez's term "aleatoric music" (Boulez, 1957) is often

used to indicate scores such as Morton Feldman's Projection I

for solo 'cello (1950) and Boulez's own Third Piano Sonata

(1957) which leave decisions to the discretion of the performer.

This term ("alea" means "dice") is misleading; performers are

L-56

not randomn.

6. Hiller and Isaacson's strategy has the disadvantage that
rejecting a choice does not preclude it from being reconsidered
in a later attempt. A much more direct solution to the problem
would have been to assemble a schedule of all avallable choices
(possibly in random order) and then to step through this schedule
systematically until a suitable choice had been discovered. This
alternate solution is much faster and has the additional
éapability of determining when no available choice is

acceptable., It is discussed more exhaustively in chapters 5, 7,

9, and 14.

7. Though many composers have employed Xenakis's program, only
Xenakis's own compositions have acheived critical

acknowledgement.

8. Xenakis's method of inhibiting large leaps between consecutive
random samples was first described by the mathematician Emile

Borel (1871-1956).

9. Xenakis unfortunately neglects such a conversion, which
results in his formula producing negative durations when Z falls

short of unity.

457

4.6 RECOMMENDED READING

Arkin, Herbert, and Raymond Colton. Statistical Methods (New

York: Barnes and Noble, 1934. Fifth edition, 1970.

Huff, Darrell. How to Lie with Statistics (New York: W.W.

Norton, 1954).

Cowell, Henry. "Current Chronicle: New York", Musical

Quarterly, volume 38, number 1 (January 1952), p. 123.

Myhill, John. "Some simplifications and improvements in the

stochastic music program", Proceedings of the 1978 International

Computer Music Conference (Computer lusic Association, 1979).

Xenakis, Iannis. Formalized Music (Bloomington: Indiana

University Press, 1971).

	1
	2
	3
	4

