Spectral features of vowels; spectrograms (*ảnh phổ*)

Cơ sở âm vi học và ngữ âm học

Lecture 13

The story so far

- Vowels can be distinguished acoustically by characteristic formant patterns
 - Formants are bundles of high-amplitude harmonics (những giải tần có cường độ lớn)
 - Formants change with articulatory settings
- "Rule of thumb": rough-and-ready relation between vowel height/backness and F1/F2
 - The higher F1...
 - The lower F2...

The story so far

- Vowels can be distinguished acoustically by characteristic formant patterns
 - Formants are bundles of high-amplitude harmonics (những giải tần có cường độ lớn)
 - Formants change with articulatory settings
- "Rule of thumb": rough-and-ready relation between vowel height/backness and F1/F2
 - The higher F1...
 - The lower F2...

From Ladefoged (1996) Elements of Acoustic Phonetics.

Interpreting formants

Diphthongs

- **Diphthongs** (âm đôi) are vowels with two different targets: the tongue moves during the vowel
 - [iə] in thìa consists of [i] and [ə] components
 - [wə] in thưa consists of [w] and [ə] components
 - [uə] in thua consists of [u] and [ə] components
 - ...etc
- What are the spectral characteristics of a diphthong?

Diphthongs

- **Diphthongs** (âm đôi) are vowels with two different targets: the tongue moves during the vowel
 - [iə] in thìa consists of [i] and [ə] components
 - [wə] in thưa consists of [w] and [ə] components
 - [uə] in thua consists of [u] and [ə] components
 - ...etc
- · What are the spectral characteristics of a diphthong?

Diphthongs

 During the realisation of a diphthong, the formants (F1 and F2) move from the values for the first vowel component to the values for the second.

- It is not possible to represent this change using spectra.
- Need a way to see frequency component structure over time.

Diphthongs

 During the realisation of a diphthong, the formants (F1 and F2) move from the values for the first vowel component to the values for the second.

- It is not possible to represent this change using spectra.
- Need a way to see frequency component structure over time.

Diphthongs

 During the realisation of a diphthong, the formants (F1 and F2) move from the values for the first vowel component to the values for the second.

- It is not possible to represent this change using spectra.
- Need a way to see frequency component structure over time.

One option

 We could look at many spectra in quick succession, like in a 'waterfall' display...

..this quickly becomes very complex

One option

 We could look at many spectra in quick succession, like in a 'waterfall' display...

• ..this quickly becomes very complex

Acoustic representations – review

- The waveform shows changes in amplitude over time.
 - Good for distinguishing broad sound classes
- The spectrum shows intensity over frequency, indicating the frequencies at which a sound has energy.
 - Good for identifying vowels, but no time dimension
- The spectrogram combines the advantages of both It indicates intensity over frequency over time.

Acoustic representations – review

- The waveform shows changes in amplitude over time.
 - Good for distinguishing broad sound classes
- The **spectrum** shows intensity over frequency, indicating the frequencies at which a sound has energy.
 - Good for identifying vowels, but no time dimension
- The spectrogram combines the advantages of both It indicates intensity over frequency over time.

Acoustic representations – review

- The **waveform** shows changes in amplitude over time.
 - Good for distinguishing broad sound classes
- The spectrum shows intensity over frequency, indicating the frequencies at which a sound has energy.
 - Good for identifying vowels, but no time dimension
- The spectrogram combines the advantages of both.
 It indicates intensity over frequency over time.

- Here, F0 in [a] lower than [i]: how can we tell?
- Striations in [a] further apart than in [i]
- Harmonics in [a] closer together than in [i]

F1/F2/F3 patterns for common vowels

• With a spectrogram, it's easy to visualise diphthongs:

Vietnamese thái [thaj]

1/4 into vowel: F1 = 803 Hz, F2 = 1387 Hz 3/4 into vowel: F1 = 410 Hz, F2 = 2042 Hz

Time (s)

from UCLA Phonetics Lab Archive, ${\rm http://archive.phonetics.ucla.edu/.}$