CHAPTER 8

MUSICAL DESIGN I: EVOLUTIONS

Evolutions are gradual changes. In normal usage, the word

also connotes physical or normative growth -- as contrasted to
regression -- but for the purposes of this chapter it is more

constructive to embrace all gradual changes, regardlesS of
direction. Commonplace musical examples of evolutions in this
generalized sense include crescendi and diminuendl, accelerandi
and ritardandi, harmonic sequences, gradually ascending or
descending melodies, and so on. Often two or more evolutions
will be concerted; for example, a musical passage might rise in
register while increasing in tempo and loudness until it reaches
a "plateau" during which register, tempo, and loudness remaln
constaht for several seconds prior to a dramatic shift to low

register, slow tempo, and soft dynamics.

8.1 DETERMINATE EVOLUTIONS

The most versatile approach to implementing evolutions using
a computer 1gs to divide them into segments, with pairs of
consecutive segments Jolning at single common points called
nodes. Each segment will then be describable by three

quantities:

1. an initial value,
2. a final wvalue, and

3. the time required to evolve from one value to the next.

A composer can use this approach either to describe intuitively
concelved evolutions or to approximate any mathematical
relationship with arbitrary accuracy. It is left to the computer
to effect gradual transitions between the Initial and final
values of a segment by determining intermediate values along a

continuous line or curve for each item in the segment.

8.1.1 Evolutionary Segments

The two simplest types of evolution requiring only endpoints

and a duration are the linear and exponential evolutions

illustrated in Figure 8-1 and Figure 8-2. Figure 8-3 illustrates

8-3

plecewise linear and piecewise exponential evolutions. An

evolution is plecewise linear when each of its segments 1is
linear. It 1s piecewlse exponential when each of its segments 1s
exponential. With a sufficlent number of segments, one may
describe any evolution imaginable as a plecewlise linear or
piecewise exponential curve. Notice the evolutions in Figure 8-3
each include two nodes for which the final point of the old
segment does not coincide with the initial point of the new one;

~such abrupt changes are called discontinuities.

Figure 8-1: Linear evolutions - a) Ascending
(increment positive); b) Descending (increment

negative).

Figure 8-2: 'Exponential evolutions - a) Ascending
(proportion exceeds unity); b) Descending (proportion

smaller than unity).

Figure 8-3: Pieced evolutions - a) Linear;
(b) Exponential. Closed dots Jjoining segments indicate

connected nodes; open dots indicate discontinuities.

o
o
9i=96/28
©
['3)
9Pl = 8'€/ 96
@©
[14]
o'l = 92/8¢
oYl = 9Lt / 652
o't = 021 /9L
o
o]
a
E
i
ainglilly
o
@©
vl=89-28
®
©
¥l = 6 ~-89
<
['+]
b'i= 0Ot - ¥'S
Q
<

ti=92-0v

vl=21-92

o

Time

ainqliny

3.1

98°0 = 9'¢/ I'E

@«
3

98°0 = 2'b / 9¢

o
<

980 =6v/2¢P

4.9

980 = L'S/ 6

98°0=9'9/.L'S

6.6

Time

sinqully

3.

L0- =8¢~ I'E

®
m

L0~ = 0P - 8¢

0
<

L0~ =26 -Gb

5.2

10-= 66— 2°¢

5.9

L0-=99-6¢

6.6

Time

aingliiy

S-1

&-Z

,/)

ainquijiy

Time

3inqlily

Time

8- %

-3b

-

8-

8.1.1.1 Linear Segments - An attribute of a musical passage

evolves linearly if it changes by equal increments over equal
units of time. Linear evolutions ascend when increments are
positive and descend when increments are negative. A typlcal

attribute which might follow a linear evolution is register.

- 8.1.1.2 Exponential Segments - An attribute evolves

exponentially if i1t changes by equal proportions over equal

units of time. Exponential evolutions ascend when proportions
iexceed unity and descend when proportions are smaller than
unity. A gradual change in tempo (that is, an accelerando or
ritardando) is felt to be most uniform when it follows an
exponential evolution. An important property of exponential
evolutions 1s that whenever an attribute evolves exponentially in
one direction, its inverse evolves exponehtially in the opposite
direction. For example the inverse of duration is tempo.
Therefore, 1f the tempo of a musical passage exponentially
increases then the durations in the musical passage will
exponentially decrease, as illustrated in Figure 8-4. Another
property of exponential evolutions is that they are only capable
of assuming positive values: it makes little sense to talk of a

negative duration, for instance.

.00
0.76
DURATIONS [———]
\ 0.50 R
in seconds - [—
0.26
0 1 2 3
TIME in seconds
240
TEMPO '8°
in bedts 120
per minute 60
0 | 2 3
TIME in seconds
Foe 24

2-4c

8-5

Figure 8-4: Relationship between duration and tempo.

8.1.1.3 Relationship between Linear and Exponential Evolutions -
The relationship between linear and exponential evolutions is
direct and significant: one obtains a linear evplution from an
exponential evolution by taking a logarithm to a suitable base;
conversely, one obtains an exponential evolution from a linear
evolution by taking an exponent to a suitable base. TFor example,
the distance traveled by a glissando may be expresgsed either in
semitones or in frequency raﬁios. The most uniform glissandil
proceed linearly when expressed in semitones, exponentially when
expressed in frequencies. To express a frequency ratio as a
distance in semitones, one takes the logarithm to the base

twelveth-root-of-two, as computed in Equation 8-1:

H

(semitones) log (frequency ratio)

2%%(1/12)

17.31 log (frequency ratio) (Equation 8-1)
e

To express a distance in semitones as a frequency ratio, one
takes the exponent to the base twelveth-root-of-two, as computed

in Equation 8-2:

8-6

(semitones)

(2#%(1/12))

(frequency ratio)

(semitones) 7
1.0595 (Equation 8-2)

i

8.1.1.4 Implementation - The process of computing an
intermediate value of an evolution given its initial and final

values 1s called interpolation. Both linear and exponential

- ~interpolations depend on the ratio of the elapsed time for the
current segment to the total duration of the segment. This ratio

ig called the interpolating factor. In cases where an iten

~within a segment adheres to several concerted evolutions, it
becomes redundant to recompute this factor in each case. The
real-valued library function FACTOR lsolates the task of
computing an interpolating factor. FACTOR requires three real

arguments:

1. T - Current time.
2. TA - Beginning time for current segment. TA must not exceed T.

3. TB - Ending time for current segment. T must not exceed TB.

Intermediate values along both types of segment may be computed
directly from the initial value, final value, and interpolating

factor. The real-valued library functlons EVLIN and EVEXP

pu=s

udnaad

#%(Vv/8) % V = JdX3A3

: "dX3A3 03 auswnbBue peg, dogs (p'Q°eT7°g "40° 0'0°ST°V) 4T
(2°8°V)dX3IA3 uwoTazouNny

pua

udnaad

4%(v-9) + V¥ = NITA3
(4°9°YINITIAT uoTaouny

pus

udngad

(vi-gL) / (v1l-1) = dHolov4d

 "HOL1OVYd4 03 3uswnBuae peg, doas (g 3B+l *ao* 1'3B°y1) 41
(8L°v1‘1)H010vVd uoT3ouny

-“NNM T ~MNM I

< NNM<T W

8-7

compute values along linear and exponential evolutions,

respectively, given three real arguments:

1. A - value of evolution at beginning of current segment.
2. B - value of evolution at end of current segment.

3. . F - interpolating factor (provided by function FACTOR).
Values of A and B supplied to EVEXP must always be positive.

~-- Programming example 8-1: functions FACTOR, EVLIN, EVEXP --

8.1.1.5 Transformations - Other types of evolutions can be
derived from linear and exponential ones through the use of
appropriate statistical transformations. Xenakis (1971, pages
47-49) suggests using the Fletcher-lMunson equal-loudness contours
in order tovmap the human ear's very non-linear responses to
loudness and frequency onto a rectangular grid. For his
composition Gradient (1982), the author used the proportional
transformation described under heading 4.2.3.2 in order to 'warp'
essentially linear evolutions so that intervals in the lowest
registers would be about 1.5 times more widely spread than

intervals in the highest registers.

8-8

8.1.2 Musical Evolutions

8.1.2.1 Johannes Kepler: Harmonices Mundi - The first musical

composition exploiting evolutions as a fundamental precept is the
"Music of the Spheres" by the celebrated astronomer Johannes
Kepler. ZXepler gives very explicit instructions for producing

this work in his 1619 treatise Harmonices Mundi. The

composition consists of several continuous tones, one for each
planet, where the frequency of each tone 1is proportional to the
speed at which the planet moves through space. Since planets
;ccelerate as they approach the sun and decelefate as they leave
it (as Kepler himself discovered), the tones of Kepler's musical
composition are heard to gliss upwards and downwards in periodic
cycles. The technology required to realize this curious work did
not exist until the advent of computers; however, it has been
realized digitally by Laurie Spiegel (1977) and independently by

digital synthesists at Yale University.

8-9

8.1.2.2 Joseph Schillinger's Melody Graphs - Joseph Schillinger
(1941) advocates a method using the above approach to compose
melodies on graph paper. This method involves three steps:

1) drawing out a melodic contour as a sequence of slanted lines,
with time represented horizontally in beats and pitch represented
vertically in semitones, 2) marking off a rhythm along the
horizontal axis, and 3) selecting pitches for éach note by
determining the scale degree in closest proximity to the line at
each point of attack. Schillinger describes elaborate procedures
ﬁfor designing contours and also includes graphs of non-linear
contours such as sinusoidal curves. His confidence in his method
brings him to contrast melodies composed in this manner to
"melodles composed by a Verdl or a Bellini [, where] the
mechanical efficiency 1s so low that 1t makes us smile, 1if not

laugh" (page 283).

8.1.2.3 James Tenney: Dialogue - More recent activity in this
area sheds Schillinger's pretentions while retaining his basic

approach. In his Dialogue for computer-generated sounds (1963;

described 1969) and in the earlier described Stochastic String
Quartet (heading 4.3.3), James Tenney used graphs pileced

together from linear segments to describe gradually evolving

3
- ¢ i
, 5-8 24
3 -
wnions asioN) wniong jpuoy
ov2 L02 L9) 08 wor 0 Ob2 002 $O8t oA L8 or 0
1 1 i | | | | 3wiz , | | | | | I [ETT
o o
2’ 2z
4 o
y o o
,; - @
% ol ol
Kiiirqogosd 1say Aungoqesd isay
1 1
z 2
€ €
b \ v
[s
9 9
2 4
KilsuaQ |ootiJan AusuaQ [DIIBA
1 . P
z 2
] — 4 S— 2
emp——————T » 14
II\!!. P4 o ———— s
(1aqwnu woljauny) adojaaul apniiidwy (+aquinu VO14uUNy) adojaaul apnjdwy
1 1
z 2
€ €
\ v &
S S
(Joquinu WI0}3ADM) BIqui L (J9QUINU WJIOJ3ADM) - 24quit |
L Ul W
i xow pi]
; {UipiMpUDG 2S10U) 2}0Y - UOLIDINPON-3PNYIIdWY 31Dy UOHOINPOW-3PN}iIduIy
A yw . e
xow EOW
apnjdwy apnjiduy
ulw uw
B oW ps- 1
1 uoljInNg ON uoHDINg 3ON

8-10

values affecting such musical attributes as average tempo,
dynamics, timbre, and articulation. These values then served as
parameters for random automata which in turn determined specific
attributes of notes. Figure 8-5 depicts the parametric graphs

used by Tenney to create Dialogue.

Figure 8-5: Parametric neans for James Tenney's
Dialogue - Copyright James Tenney 1969. Spectral
increases with waveform numbers; rise times increase

with amplitude envelope numbers (after Tenney, 1969).

8.1.2.4 Other Applications - Tenney's work is reflected in the
article "Graphlical language for the scores of computer-generated

sounds" (1968) and book The Technology of Computer Music

(1969), where Max Mathews, et al, describe rudimentary procedures
for "quantizing" line graphs in order to produce sequences of
durations, "duty factors", pitches, and amplitudes. ZEach graph
is pieced together out of linear segments.

Among the procedures described by Emmanuel Ghent (1978) for
manipulating stored melodies in real time is a method of
"interpolating" between melodic pitches. Figure 8-6 illustrates

how this method works. As with Ghent's method of "translocation"

8-11

(heading 3.3.1.), it is necessary that the original melody be
stored as a sequence of indicies relative to a separate array
holding the repertory of pitches. Given two consecutive notes in
a melody, interpolations are effected by sliding a real variable
X linearly from the first index to its successor. Intervening
pitches are obtained by taking the integer part of X and using

this truncated value as an index in 1ts own right.

Figure 8-6: Emmanuel Ghent's Method of Melodic
Interpolation - after Ghent (1978). Copyright 1978

Fmmanuel Ghent.

Applications of gradual evolutions include some fanciful
effects 1n which one evolution works perceptually to neutralize
another. Such effects trace back to the infinitely rising
glissandl conceived by Shepherd and realized by Jean-Claude
Risset (1970): at least two frequencies related by an octave are
always constantly sounding, but as each frequency approaches the
upper limit of register, it fades away to be replaced by a
gradually intensifying frequency one or more octaves lower.
Scott Kim has incorporated this principle in a realization of a
pérpetually modulating canon by Bach so that whenever the canon
completes a full cycle of keys, it returns to its original

register. Laurie Spiegel (1974) has realized a "perpetual

8-12

acceleration” in which every other beat fades away with each
doubling of tempo.

An alternative to encoding an evolution as alphanumeric data
is to 'perform' the evolution by controlling a knob or similar
device which the computer monitors in real time. Mathews and
Moore's GROOVE (1970) was designed for creating and editing
evolutions in this very manner; Laurie Splegel has employed

GROOVE in just such a capacity for works such as Pentachrome
J I y

and The Expanding Universe (both 1974). 1In each case, Spiegel

supplied her own prograns which accept information supplied in
real tTime from GROOVE and "derive from 1t much more complex music

than [Spiegel] actually played" (Spiegel, 1980).

8.1.3 Oscillations
Figure 8-7: A sinusoidal oscillation.

In contrast to linear and exponential evolutions are

oscillations. Where linear and exponential evolutions proceed

directly from a source to a destination, osclllations swing back
and forth around a point of equilibrium. The "smoothest"

oscillations are sinusoidal oscillations such as the curve

2 - I?/ck

Phase: O° 180° 3600
Period o

Attribute

Time \

,1 -t v S At ,.‘ e wmuu‘u“ "W""N‘

—-m] ""‘"’j"- r—vwvv'\vnj ,“1.., r .

8-13

depicted in Figure 8-7. Each full swing of a sinusoid brings the
oscilllation from the point of equilibrium up to a "peak", back
through the point of equilibrium to a "trough", to return once
again to the point of equilibrium. The length of time occupied
by one full swing is called the period, while the number of
periods contained within a given unit of time (e.g., a second, a
whole ndte, etc.) is called the frequency. The vertical
distance Verticaily from the point of equilibrium to either the
:fop of a peak or to the bottom of a trough is called the
amplitude. The phase expresses the relative position within
a swing at the beginning of an oscillation. Because a sinusoid
"wraps around" upon itself with each new swing, it is most
appropriate to express phase using a circular measurement such as
degrees or radlians.

The smoothness of sinusoidal oscillations has made them
especlally attractive to composers interested in cyclic forms.
James Tenney's Phases (1963; described 1969), John Myhill's

Scherzo a tre voce (1964; partially described in Hiller, 1970)

and Gary Kendall's Five Leaf Rose (1980; described 1981) each

explolt sinusoids, though in wildely different ways.

8-14

8.1.3.1 John Myhill: Scherzo a tre voce - John Myhill's

Scherzo a tre voce derives i1ts melodic contours from gradually

evolving sinusoids. The Scherzo is a work both composed and
realized using computers, and it is directly inspired by graphic
contours depicted by Schillinger (1941). Each of the three
volces remains within a unique one-and-one-half octave range and
proceeds independently of the others in a chailn of phrases.
Myhill's program selected melodic contours from the eight basic
forms 1llustrated in Figure 8-8 by specifying two

characteristics:

1. Deviation from central pitch, with three options:
a) deviation constant at a tritone (trough-to-peak

range: one octave), b) deviation increasing linearly

from a unlson to a tritone, c¢) deviation decreasing

linearly from a tritone to a unlson.

2. Period of oscillation, with three options:

a) constant period, b) decreasing period (frequency of
melodic oscillation increases linearly from zero) more
often), ¢) increasing period (frequency decreases

linearly to zero).

Myhill eliminates those contours characterized by both constant

-V

youd {p1juad woly uoypiasp Buispaldaq

=
4d

yopd [D2juad wouy uoLDIASDP Buispaloul

A AN

~J VU

AN

IRV

co:a |DJ}USY WOI§ UOHDIASD jUD}SUC)

pouad Buispatoaq polad Buispaiouy)

polsad jupjsuo)

8-15

gamut and constant rate of oscillation, reducing the number of
possible shapes from nine to eight. In addition, each phrase may
trace 1ts assigned contour in one of three ways: a) the melody
can consist of a continous sinusoidal glissando, D) the melody
can consist of discrete pitches proceeding according to a
predefined scale and rhythm, with each pitch determined by the
scale degree 1n closest proximity to the contour (Schillinger's

4o

nelody can consist of discrete pitches

<

oy
=
D

approach) or c)
J proceeding acéording to a predefined scale, so that each pitch
'begins wnen the contour crosses the corresponding scale degree.
Durations in the last case depend on the steepness of the curve

as 1s passes from one scale step to the next.

Figure 8-8: HMelodic contours in John Myhill's Scherzo

a tre voce.

8.1.3.2 Implementation - Sinusoidal oscillations may be computed
using the real-valued function SIN provided by the standard
FORTRAN library of mathematical functions. Suppose we wish to
compute the value of a sinusoidal evolution after T units, given
amplitude AMP, frequency FREQ, and phase PHASE. Our call to

function SIN (note 1) would then take the form:

4N

!

>

g-\

((2'0°8°0°1)dX3A3 (4°0"£°0"2)dX3IAT)IXNYH = HNQ
_ (2Lf1v11)doiovd = 4

()aNVHE:(V-8) + V = X

uoTBad sTy3 wouay AJwdolgTun Jdagqunu wopued 303Tag)
(4°28°18INITA3 = g
(4°2v IVINITAG = v

abued juaduno 4oy spunoq daddn pue JsmoT auTWwJdagag o)
(2L'r1f1)do1ovd = 4

Jo3oey Burietodusgutr autwasgsg o)

$-3 %z

H3IN3D + (JSVHJ+DIHL/LHESBLEG2 I)INIS # dWY = A g 2

8-16

-- Programming Example 8-2 ~-

8.2 EVOLVING RANDOMNESS

8.2.1 Evolving Uniform Randomness

It is a simple matter to describe evolving ranges of uniforn
randomness. Suppose at time T1 we want some musical attribute X
to be digtributed uniformly between a lower bound Al and an upper
bound Bl. Suppose further that we wish this range to evolve
gradually until at time T2, X 1s distributed uniformly between a
new lower bound A2 and a new upper bound B2. Then for each time
T between T1 and T2 it will be necessary 1) to determine
momentary bounds A and B and 2) to select X uniformly between A

and B. The following excerpt of code 1llustrates this process:
-~ Programming example 8-3 --

The last calculation occurs frequently enough to merit a special

pua

udnaad

()aANVHR(V-8) + ¥V = WHAINN

s "WH4INN o3 ausuwnBuae peg, doas (g'a3b-y) 4t
(8°V)WHLINN woT3ouny

NN WD

TSN
SRS

8-17

real-valued library functilon UNIFRM which returns random values
uniformly distributed between a lower bound A and an upper bound

B. Both A and B must be real:

-- Programming example 8-4: function UNIFRM --

8.2.2 Evolving lleans and Variances of Random Automata

Using random functions like RANX, and GAUSS, 1t is
sufficient to obtain means and variances from EVLIN or EVEXP.
For example, suppose we wish to generate a sequence of durations
which is fast and periodic at time T1 but which evolves gradually
until at time T2 it 1s slower and moderately periodic. Table 8-1
gives illustrative values for average durations and for ratios

between the maximum and minimum durations:

Table 8-1: Illustrative values for an evolving

sequence of rhythmic periods.

Then for each individual duration DUR beginning at time T between

T1 and T2, our composing program would invoke RANX (heading

%’\/] N

-

-~

S 2

oTpoTJaade
AT93reaepou ‘IoMOTS 0°8 0" L GL
oTpotaad ‘isegy 0°1L 0°2 LL
uotqdraossq uotlaodoad poTIed QWT]T,
WNWTXBY o3rvaoAy

PN

8-18

L,2,1.1) as follows:

-- Programming example 8-5 --

8.2.3 Evolving Discrete Randomness

Evolutions affecting discrete repertories of options can be
implemented by supplying gradually changing parameters to random
automata such as IBINOH or IPOISS. However, for many
applications it may be desirable to employ some specialized
density function or to take steps to insure that the individual
decisions adhere rigorously to the intended statistical

characteristics.

8.2.3.1 Direct Selection - A direct approach to evolving
discrete randomness is to compute a stored distribution of
welghts using some specialized density function. If the
distribution evolves rapidly, such computatidns should be
reinitiated prior to each new decision. The program might then

pass this stored distribution to library subroutines such as

SELECT (heading 4.2.2.5), CURVE (heading 4.2.3.4), HEUR (heading
7.1.1), or DECIDE (heading 7.2.1).

An elegant instance of direct selection may be found in the
TENDENCY feature of Gottfried Michael Koenig's PROJECT2 program
(1970b). Like PROJECT2's other selection features, TEWDENCY
selects options from a "supply" of NUM options provided by the
user. In addition, the user provides an evolving "mask" which
determines upper and lower limits for region of uniform
~-probablility between 0 and NUM. In order to select an attribute
for a note, TENDENCY selects a random value within the region
effective at_the note's stafting time and then rounds this value
upward to determine which option in the repertory is to be
chosen. Koenig's method seems to make most sense when the
options are equally spaced along a continuum. For examples,
TENDENCY might be asked to select from the following repertory of
dynamics: »p, p, mp, mf, ff; alternately, TENDENCY might be
used to select from the following ways of producing string
colors: playing on the fingerboard, normal playing, playing on
the bridge.

Because Koenig's procedure requires information describing
not only the repertory of options, but also the starting time of
the note (alternatively, chord, phrase, and so on) and the
characteristics of the mask, it 1s usually most convenient to

implement Koenig's procedures explicitly in a composing program.

pus 91

udngad g}

(L+(H)XTITIINIVA = LINS3y vl

3ANTIVA Aeaue ut Adzus Butpuodssdados dn >ooq) £l

{(WNN)3EQTd % Y = 4 2L

87de3 Jo 8zTs 03 Jd2gqunu sSTy3 aleog 9 L

(8°V)WHHINN = H , oL

LO...mm(_ m..nr._u. EOL& \AHELDLHCJ LNDEJE wopueJd u.Um.mmw U
» "ON3L 03 juswnbuae peg, doas (p-L'3B:gruo°Q 0 aT"Vv) 3T
(428 1LGINITIAT = g
(4°2VFLVINITAS = ¥

uotBaa guauuno uogy s3TwTT J8ybrty pues usmoT suTwaazag 9
(24°1b1L°1)H01DVHd = 4

LDPUmm mCHPMHDQLmPCﬂ MEHELMPND]
(L)3NIVA UoTsSUsSWIp
(WNN‘28‘t8‘av v al‘LL 1°anTIvA“1INS3y)aNIL suTanoagns

SN NONOD

ul.w .x./\ﬂ

8-20

Strictly for the purpose of illustrating what considerations are
involved in implementing this procedure, we supply a subroutine
called TEND which details the basic calculations in FORTRAN '77.
In addition to a 'return' argument RESULT, a repertory of options
VALUE, and a number of options NUM, TEND requires a current time
T and six characteristics describing the current segment of the
mask: a starting time T1, an ending time T2, initial lower and
upper limits Al and Bl, and final lower and upper limits A2 and
~B2. The task of determining these characteristics 1s left to the
.ﬁain program. TEND allows the repertory of options and the mask
to be described independently by assuming that a lower 1limit (A
value) of zero and an upper limit (B value) of unity describes
the full range of options. (Such independence is not always
desirable). Notice that in order to keep the quantity R computed
in line 12 within‘the range from O to NUM, Al and A2 may never

fall below zero while Bl and B2 may never exceed 1.
-~ Programming example 8-6: subroutine TEND --

A useful generalization of Koenig's approach would embrace
options with varying weights. TFor example, one might use the
following repertory of durations, weighted so that the longer
durations occur proportionately less often: . duration 2 with

welght .405, duration 3 with weight .270, duration 5 with weight

3-21

.101, duration 8 with weight .086, and duration 13 with weight
.062. One would then describe evolving limits for regions of
uniform probability between zero and the sum of these weights,
1.000, and use the methods of the library subroutine SELECT
(heading 4.2.2.5) to transform values chosen from these regions

into discrete durations.

8.2.3.2 Evolving Statistical Frames - Another approach to
evolving discrete randomness involves dividing an evolutionary
gsegment into statistical frames. At the beginning of each frane,
the program determines weights for each option and then proceeds
to generate a determinate pool of samples (chapter 5). It may
then shuffle ﬁhis pool randomly or organize it in various other
ways (such as sorting, described in chapter 9 and comparative

search, described in chapter 12).

8.2.4 Musical Applications

The excerpt of Koenig's "Uebung fur Klavier" examined in

chapter 5 (heading 5.4) is exceptional in that Koenig eschews

8-22

using TENDENCY, practically every other "structure" in the work
employs TENDENCY in one role or another. A more recent
computer-compogsed work for plano, Thomas DeLio's Serenade
(1974) provides a further illustration of evolving discrete

randomness.

8.2.4.1 Thomas DelLio: Serenade - DeLio's Serenade is an
elaborate work for which the form was composed manually while the
detalls were selected automatically. It divides into three
parts, each dividing in turn into ten sections; marked contrasts
and occaslonal long silences between many of these sections give
the work an episodic quality congenial‘to its title. The basic
ideas consist of various rhythmic patterns and various chromatic
"cells". Part I introduces these ideas 1s "embryonic states";
they emerge "fully formed" in part II, which also serves a
developmental purpose; part III extrapolates several of the

ideas from earlier parts into "broad sweeping gestures".

Figure 8-9: Part 1, section 10 of Thomas DelLio's
Serenade for solo piano. Copyright 1982 Dorn

Publications.

8" - —Z'Z a.

down

N

g

Pedot complatety

H 2! | o 1
Lh—im i I
ot Tl 1l
i i N i LA Sl

~ X [N -
_ N | |

T
Pat H i

ﬁ..lhn_:_:

—

T I, e T e
”
kd

3 [\
N by =%

i |
[
=..J__: il

T

LN

Broduaily down un:

== |
=
: _-—_J' i =
o g: nE _ﬁE
2»

_ W::_
L
[y

T
Y]

}ji‘v} G -A

77 i !] i
..m [y , T
ﬁ N 1] it ST

' \ % i hY
| Fl) L
7 d| | 2 ¥ 4\ [s
Y & j_: =3 Il I
z I = « =
£ il pd
N s J1t
~ ¥ W Fa. Hy '|=
LI | N
ls L N | o
mm —N
ot w W 1y s\l Al »
p.»_u M e] u B 4
- TN DL NEP HEp N £

|
|
|

b-T2y

[l T x1 [Ix] Jx] =] [=] [x] 7]
L T T I T 1T -0 T T T+ T 1]
ERNIBIENOEIE EE BN nOInta e

f—\“g T\

- Gabhius. AL A i BRI T NP s— St R | At T

8-23

Figure 8-10: Interferences resulting from a 7:4

polyrhythm - X's indicate 'primary' beats.

The following description of the compositional procedures
used in part I of section 10 hasg been drawn from commentary
supplied to the author by DeLio. Thigs excerpt 1ls reproduced in
Figure 8-9. The basic "ideas" employed in this section are a 7:4
polyrhythm and two chromatic cells: the collection G# B C D and
its reflection, G# A# B D. Registers ére distributed uniformly
éver the range from middle C upward. The section consists of 34
beats and breaks into two gradual evolutlons lasting an equal

number of beats.

Rhythm - Over the first 17 beats, the rhythm coalesces from a
sparse, irregular texture to a consistent 7:4 pattern. DelLio
accomplishes this evolution by treating each beat as a
statistical frame whose elements are the 29 unequal rhythmic
units obtained by interfering septuplet thirty-seconds in
seven-brackets against duple sixty—fourthé. Figure 8-10 depicts
the resulting pattern. In this section, only one note may attack
at a time; the number of attacks per beat results from a Markov
process in which the number of attacks may either stay the same,
increase by one, or (with relatively small probability) decrease

by one from one beat to the next. This process resulted in the

8-24

following chain:

566777878899 1010 10 10 10 10

Once the number of attacks had been determined, Delio's program

selected attacks without replacement (chapter 5) from the units

depicted in Figure 8-10. Initially, -each unit received equal
weight; as the rhythm evolved the thirty seconds and sixty

| fourths received less and less welight until only the 7:4 pattern
remained with one attack per unit (note 2). This pattern holds

consistently through the remaining 17 beats.

Pitches - At the beginning of the section, Delio's program

selected uniformly with replacement (heading 4.2.2.5) from G#,

B, C, and D. Through the first 17 beats, the likelihood of
selecting C decreases gradually while the likelihood of selecting
A# gradually increases, so that G#, A#, B, and D receive uniform
welght at the mid-point of the section. Over the remaining 17
beats, the weights for G#, B, and D decrease gradually until only

A# remains at the end of the section.

8-25

8.3 DEMONSTRATION 6: EVOLUTIONS

Demonstration 6 i1llustrates how evolutions might be
incorporated into a composing program. The piece divides into
eight segments, within which the following four global
attributes gradually change: average period, proportion between
minimum and maximum periods (syncopation), articulation, and
register. The eight segments in turn divide into individual
notes, each characterized by three local attributes: period,

duration, and pitch,

8.3.1 Compositional Directives
Figure 8-11: Profile of Demonstration 6.

Figure 8-11 depicts graphically how the global attributes
evolve., Both the average period and proportion between minimum
and maximum periods are described by plecewise exponential
curves. Articulations are selected using the methods of
Gottfried Michael Koenig's TENDENCY feature from a repertory of

four options:

R | PR S

8-26

1. Short: duration fills 50% of period,
2. Detached: duration fills 75% of period,

3. Sustained: duration fills entire period, but next note

is tongued, and

L. Slurred: duration fills entire period and next note is

slurred.

Registers are determined by locating a gamut of twelve adjacent
semitones uniformly within the lower and upper boundaries

depicted in the registral graph.
Figure 8-12: Stylistic matrix for Demonstration 6.

of the local attributes, periods are selected accordance
with the average period and maximum proportion using John
Myhill's generalization of the exponential distribution (heading
b.2.3.1); durations are calculated from the period in accordance
with the articulation. Chromatic degrees are selected
heuristically with cumulative feedback so that the twelve degrees
are éqﬁally balanced (with sensitivity to duration). However,

choices of degrees are subject to the stylistic matrix depicted

o7 ZQ} [a

feo
id

] L)
[[[[
) N L
= L= =
N o Y 8
% E=S P =% + ..ﬁx.
N)]
aad T x
[L L
[[
h N
=
1 [[|
= e - =g =
[[[
Al A » iy
A N N N n N
L [[[[
L ' 3.9 » LY
3 1] 13 3
[[Y 4
A) 5.9 LY
[[L 3
4 [1 [
) N
T 3=
uw u“n uwm u“ uun
4 4 1 s
a X 13
& e T e BN A

Povecws |

povesiy

B s |

%

20

[

7~

AL/

oL

b

X3

-

»

-~

sl

=3

)

A

b
a3

W
1

Charles AMES

#i’-—‘ "

7
I

~

- 4
>

1
T®
e

1

o of

| _XX]
W

1

P be D

i
T

7~

L

e
>

b

F sk WP . 4

Péal

s T

—

o e .

1

L ~4

1”4

P

1

o ik
e
Y

k>
T

g W

T
T
T

H
) O —)

?,L

T

Demonstration 6

T

=ttt

1]

E
N

—

-d-#f
-

-

=

1%

mee

ke

i
pt

~~

e 3

T

A~}

te

80

»!

i

L

T
A
n3-e-

04 be

nn i
¢
p 4

Clarinet
STRICTLY J

—_— 7y
Ao

I
) |
i |

-\

A}

(© Charles Ames 1984
1

8-27

in Pigure 8-12. This matrix constrains the progression of
degrees so that no two out of any three consecutive degrees may
form a unison, tritone, minor second, major seventh, or expansion
of the any of the proceeding intervals by one or more octaves.

The complete product appears in Figure 8-13.

Figure 8-13: Transcription of Demonstration 6.

8.3.2 Implementation

-- Programming example 8-7: program DEII06 (2 pages) --

Because the global structure of Demonstration 6 is fully
specified, program DEMO6 reduces to a single loop for composing
notes (lines 35-86). The parameter MSEG gives the total number
of segments, while the index ISEG indicates which segment the
‘program 1s currently composing. Lines 37-46 serve to update ISEG
whenever the current time ITIME crosses a boundary between
segments. Included here is the test for completion (lines
40-43). Array KTIME holds ending times for each segment; these

times are initally expressed in seconds, so must be converted to

8 27 Ex
1 program DEMOG
=4 c
3 c Demonstration of evolutions
4 c
5 parameter (MSEG=8)
< integer KTIME(D:MSEG)
7 real BEGAVG(MSEG),ENDAVG(MSEG),BEGPRD(MSEG), ENDPRO(MSEG)
8 real BEGALW(MSEG),ENDALW(MSEG),BEGAHG (MSEG), ENDAHG (MSEG)

) 9 real BEGRLW(MSEG),ENORLW{MSEG),BEGRHG{MSEG), ENDRHG (MSEG)
10 data KTIME(O) /0, 10, =20, 25 36, 35, 40, 50, 6O/
11 data BEGAVG / 8.0, 8.0,15.0,10 1,10.1, & 3, 4.0, 8.0/,
12 H ENDAVG / 8.0, 8.0,10.4, 6.3, 6.3, 4.0, 8.0,16.0/
13 data BEGPROD / t.0,16.0, 1.0, 8.0, 1.0, 8.0, 1.0,16.0/,
14 H ENOPRO / 16.0, 1.0, 8.0, 1.0, 8.0, 1.0,16.0, 8.0/
15 data BEGALW / 0.0, 3.0, 0.0, 3.0, 0.0, 3.0, 0.0, 3.0/,
16 : ENDALW / 3.0, 0.0, 3.0, 0.0, 3.0, 0.0, 3.0, 0.0/
17 data BEGAHG / 1.0, 4.0, 4.0, 4.0, 4.0, 4.0, 1.0, 4.0/,
18 H ENDAHG / 4.0, 1.0, 4.0, 4.0, 4.0, 4.0, 4.0, 1.0/

; 18 data BEGRLW / 40.0,40.0,68. 9,49.0,40.0,40.0,68.9,68.9/,

¥ 20 : ENDRLW / 40.0,68.9,49.0 ,68.9,40.0,40.0,40.0,40.0/

: 21 data BEGRHG / 40.0,68.9,68.9,68.9,40.0,58, 0,68.9,40.0/,

% 4= H ENDRHG / 68.9,68.9,68. 9,68.9,58.0,40. 0,68.9,40.0/

b 23 data REST/.true./, ISEG/O/ ITIME/O/ ENDTIM/D 7/, IDEG/1/ ITVL/3/
24 o}

25 c Initialize

26 c

27 open (2,file='DEMOG.DAT',status='NEW')

28 [Convert times into thirty-seconds

29 do (I1=0,MSEG)

30 KTIME(I) = KTIME(I} % 16

31 repeat

32 c

33 C Main compusing loop

34 c

3% do

36 C Test for end of segment

37 if (ITIME.ge.KTIME({ISEG)) then

38 ISEG = ISEG + 1

38 c Test for end of compostlon

40 if (ISEG.gt.MSEG) then

a1 close {(2)

42 stop

43 end if

44 BEGTIM = ENDTIM

45 ENDTIM = Float(KTIME(ISEG))

a6 end if

47 c Compute interpolating factor

48 F = FACTOR(Float{ITIME),BEGTIM,ENDTIM)

43 c Compute average period between attacks

50 AVGPER = EVEXP(BEGAVG(ISEG),ENDAVG(ISEG),F)
51 c Compute proportion between mimimum and maximum periods
52 PAROPOR = EVEXP(BEGPRO(ISEG),ENDPRO(ISEG),F)
53 c Select period between attacks

54 PER = RANX{AVGPER,PROPOR) + REMAIN ‘
S5 Cc Select articulation

56 ALOW = EVLIN(BEGALW(ISEG),ENDALW(ISEG),F)
57 AHGH = EVLIN(BEGAHG(ISEG),ENDAHG({ISEG),F)
58 IART = ifix(UNIFAM{ALOW,AHGH)) + 1

59 c Select duration of note and rest (if any)
60 if {IARAT.le.2) then

61 c Note is sustained or slurred to successor
62 IDUAR = max0(2,ifix(PER+D.5))

63 REMAIN = FER - float(IDUR)

64 IGAP = O

65 else if (IART.eq.3) then

66 [Notes filling 75% of period

67 IDUR = max0(2,ifix(PER*0.75+0.5))

68 IGAP = max0(0,ifix(PER-Float{IDUR)))

69 REMAIN = PER - float(IDUR+IGAP)

70 else

71 [Notes filling 50% of period

72 IDUA = max0(1,ifFix(PER*0.5+0.5))

73 IGAP = max0(0,ifix(PER-Float(IDUR))) !
74 REMAIN = PER - fFloat(IDUR+IGAP) !

75 end if

% DEMOG . FOR Page 2
i .
£ 76 c Select register
N 77 RLOW = EVLIN(BEGRLW(ISEG),ENDRLW(ISEG),F)
: 78 RHGH = EVLIN(BEGRHG(ISEG),ENDRHG(ISEG),F)
b 79 IREG = ifix(UNIFAM{ALOW,RHGH)+0.5)
X a0 c Select degree
g : a1 call DEGREE(IDEG,ITVL,float(IDUR))
=14 c Write note
g 83 cmll WNOTE(ITIME,IDUR,IDEG,IREG)
¥ 84 o) Write rest or break (if any)
8s if (IART.gt.1) call WNOTE(ITIME, IGAP,0,0)
86 repeat
87 end

1 subroutine DEGREE({IDEG, ITVL,DUR)

2 parameter (MOEG=12,MTVL=11)

3 integer IGLTVL({MTVL,MTVL),ISCHED(MOEG)
4 real CUMDEG(MDEG)

S logical LGLTVL({MTVL ,MTVL)
6
7
a8
g

K
i
I3
)
H
€

equivalence (LGLTVL,IGLTVL)
data CUMDEG/0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0./

data IGLTVL/ O, O, O, O, O, O, O, O, O, O, O,
H o,-1,-1, 0,-1, 0,-1,-1, 0, 0O, O,

10 H 6,-14, 0,-1,-1, 0,-1, 0, 0, O, O,
5 11 : o, 0,-1,-1,-4, 0, 0, 0, 0,-1, 0O,
4 12 : o,-1,-4,-1,-4, 0, 0, 0,-1,-1, 0O,

13 : g, o, 0, 0, 0, 0, 0, 0, 0, O, O,
H 14 : o,-4,-1, 0, 0, O,~1,-1,-1,~-1, 0O,
H 15 : ¢,-4, 0, 0, 0, 0,-1,~-1,-1, 0, O,
3 16 : o, o, o, 0,-4, 0,-1,-1, 0,-1, O,
N 17 H g, o, 0,-1,-1, 0,-1, 0O,-1,-1, 0O,
) 18 : o, o, 0o, 0, 0, 0, 0, 0, O, O, O/

19 data ISCHED/1,2,3,4,5,6,7,8,9,10,11,12/

20 data HUGE/10000000.0/

21 call SHUFLE(ISCHED,MDEG)

a2 CMIN = HUGE

23 do (J=1,MDEG)

24 JDEG = ISCHED(J)

25 JTVL = JDEG -~ IDEG .

26 if (JTVL.1t.0) JTVL = JTVL + 12

27 if (JTVL.gt.0 .and. LGLTVL{JTVL,ITVL)) then

28 C = CUMDEG(JDEG)

29 if (C.1t.CMIN) then

30 CMIN = C
I 31 LOEG = JDEG
i 32 LTVL = JTVL
; 33 end if

34 end if

35 repeat

36 IDEG = LDEG

37 ITVL = LTVL

38 CUMDEG(IDEG) = CMIN + DUR

39 return

40 end

ORI

e

e £

priver ot

thirty-second notes (lines 29-33).

The remaining symbols of DEMO6 adhere to the following

mnemonlc 'roots' corresponding to attributes of notes:

8-28

o

PER - average period between attacks (equivalently,
average tempo). Each period divides into two
components: the duration of a note is indicated by the
mnemonic DUR, while the remaining silence 1s indicated

by the mnemonic GAP.

PRO - proportion between maximun and minimum periods.
ART - articulation; the subsidiary mnemonic roots ALY
and AHG correspond to lower and upper limits,
respectively, on the range of possible articulations.
REG - register, expressed as the lowest pitch in a
12-semitone gamut. The subsidiary mnemonic roots RLW
and RHG correspond to lower and upper limits,
respectively, on the range of possible lowest pitches.

DEG - degree of the chromatic scale.

TVL - interval in semitones.

8-29

The graphic information depicted in Figure 8-11 corresponds to
the numeric information supplied in the DATA statements (lines
11-23) at the head of program DEMO6. Each array whose name
begins with BEG holds the value associated with an attribute at
the beginning of the segmeht; its counterpart whose name begins
with END holds the evolutionary 'target'. Before computing any
specific evolutionary values, DEM0O6 calculates a single
interpolating factor F (line 48) which holds through an

iteration.

8.3.2.1 Rhythm - DENMO6 composes periods between consecutive
attacks using the library function RANX (line 54). The library
function EVEXP provides exponentially evolving values for both
the average period (line 50) and the ratio between minimum and
maximum periods (line 52).

In order to select a duration, the library function EVLIN
first computes linearly evolving limits for a region of uniform
probability ranging at most from 0.0 to 4.0 (lines 56-57). These
limits are then employed (line 58) to choose one of the four

types of articulation listed above.

8-30

8.3.2.2 Pitches - Selection of register for a note uses the
strategy of the library functlion EVRAN. Function EVLIN first
computes linearly evolving limits for a region of uniform
probability ranging at most from E3 to Ab5 (lines 77-78). These
limits are then employed (by line 79) to select the lowest note
in a one-octave gamut. Subroutine DEGREE then provides a
chromatic degree which (line 81) subroutine WNOTE places within
this gamut (line 83). DEGREE employs the methods of the library
bsubroutine HEUR (heading 7.1) to select chromatic degrees subject

to the stylistic matrix illustrated in Figure 8-12.

8.4 NOTES

1. The SIN function requires that phases be expressed in radians.

To convert from degrees to radians, multiply by 0.0174533.

2. The triplets nested under the septuplet brackets in the first
and third systems of Figure 8-8 result from manual interventions

by the composer.

8-31

8.5 RECOMMENDED READING

Mathews, Max, with F. Richard Moore. "GROOVE: A program to

compose, store, and edit functions of time", Communications of

the Association for Computing Machinery, volume 13, number 12

(December 1970), page 715.

Tenney, James. "Computer music experiences, 1961-1964",

- Electronic Music Reports, volume 1, number 1 (1969) page 23.

	1
	2
	3
	4

